

8 Media Types and Their Uses
There are presently 10 recognized
media types in CSS 2
by stephanie sullivan

34 Repurposing Fireworks Web
Design Comps for Extra Dollars
Adapt Your Design Comps, Use
PowerPoint Design Templates
by joanne watkins

7 • 20054 • MXDJ.COM

38

24

12

16 Tree Component –
Horizontal Scrolling
A Problem and a Solution
by guy watson

18 Cartoons By the People For
the People
How flash is democratizing animation
by larry clow

28 The NumericStepper
Component
One of flash's hidden gems
by steven grosvenor

38 Introducing the ColdFusion
Enterprise Manager
New features in CFMX 7 for High
Availability and Multiple Instances
by tim buntel & geoff green

7 • 2005 MXDJ.COM • 7

on’t forget that you can blog

yourself now, too, under the

MXDJ domain – just follow the

blog-n-play link from http://

mxdj.sys-con.com.

Blog Topic: Breeze
Open Studio Discussions Breeze

Room
by alan musselman

from http://weblogs.

macromedia.com/amusselman/

 The Open Studio Discussions (http://

macromedia.breezecentral.com/osd/)

is a Breeze room that will be open for

2 hours from 7-9pm PST every other

Tuesday (starting July 5, 2005) for anyone

that uses Studio MX 2004 (Fireworks,

Dreamweaver, FreeHand, Flash) to come

in and ask questions, share ideas, tips,

techniques, and explore Breeze on a

more personal level.

 This is pretty much an underground

thing and generally after hours for me,

but I’m looking forward to seeing sites

and apps, chit-chat or anything cool you

have to show off and/or help you get an

issue sorted out.

 A lot of times passing emails back

and forth can become tedious, time

consuming and complex in support so I

use Breeze to communicate directly with

the customer to identify the issue, deter-

mine a solution, and provide guidance

and help to implement that solution.

It’s that simple...if I can’t understand the

issue through email, I’ll ask them to join

a Breeze Meeting. I feel like were both on

the same level during the entire experi-

ence, its great!

Remember: 2 hours

7:00-9:00PM sync time zone (http://

www.worldtimeserver.com/meeting-plan-

ner.aspx) I’m in California

07-05-2005 (every other Tuesday)

Blog Topic: ColdFusion
Persistent CFCs and CFQUERY

by tom muck

From http://www.tom-muck.com/

 I see a lot of people using CFCs in ses-

sion and application scope who do not

take into account that you should always

declare local variables at the top of your

<cffunction> tag:

<cffunction name=”blah”

returntype=”any”>

<cfset var i = 0>

<cfloop from=”0” to=”10” index=”i”>

<!--- Some code --->

</cfloop>

</cffunction>

 Many people are doing this, but I

wonder how many people apply the

same principle to recordsets within the

CFQUERY tag. . . .I see this a lot:

<cffunction name=”testRS”

access=”public” output=”false”>

 <cfquery name=”rs”

datasource=”Northwind”>

 SELECT * FROM Products

 </cfquery>

 <cfreturn rs>

</cffunction>

 If this is in a persistent scope, the

variable rs will be available even after the

return call. In fact, it will hang around for

the life of the persistent CFC. To properly

scope the query, you should declare it

first:

<cffunction name=”testRS”

access=”public” output=”false”>

 <cfset var rs = “”>

 <cfquery name=”rs”

datasource=”Northwind”>

 SELECT * FROM Products

 </cfquery>

 <cfreturn rs>

</cffunction>

 Now, the rs query will be destroyed

after the function returns the variable to

the caller -- it is not persisted within the

CFC. You can try it like this. Create a cfc:

<cfcomponent>

<cffunction name=”testRS”

access=”public” output=”false”>

<cfquery name=”rs”

datasource=”Northwind”>

SELECT * FROM Products

</cfquery>

<cfreturn rs>

</cffunction>

<cffunction name=”testRSBad”

access=”public” output=”false”>

<cfreturn rs>

</cffunction>

</cfcomponent>

 The function testRSBad() looks like it

should throw an error, because rs is not

bugs

The MX Blogosphere

Our regular feature taking an online stroll around the MX world
by mxdj news desk

d

“You should
always

declare local
variables at

the top of
your <cf

function>
tag”

8 • MXDJ.COM 7 • 2005

defined, however if this is in persistent

state and you hit the testRS() method

first, then rs is persisted for the entire ses-

sion.

 Try it out: make sure you have ses-

sions turned on in the Application.cfm

file. Then put some code on a page called

testrs.cfm:

Next

page

<cfif not isdefined(“url.hit”)>

 <cfset session.user1 = createobject(

“component”,”testuser”).new()>

 <cfset session.user1.testRS()>

</cfif>

<cfdump var=#session.user1.testRS-

Bad()#>

 You have a link to the page, and you

are instantiating the session instance of

the CFC only once -- when you preview

the page. When you hit the link, you

will see the page again with the same

recordset dumped out, but this time it is

coming from the leftover persisted global

variable rs that was not scoped properly

in the CFC.

Blog Topic: Flash Lite
Quest for a Flash Lite Enabled

Phone
by tim walling

From http://www.timwalling.com/

 I think one of the biggest questions

right now for many Flash developers get-

ting involved with Flash Lite is “Where

can I get a phone that will let me play

with this stuff?” Of course you can jump

right in and use the standalone player

but that’s not as much fun as carrying

your Flash apps around, showing your

friends, impressing the ladies, etc.

 There’s been some great input on

the FlashLite mailing list (http://groups.

yahoo.com/group/FlashLite/) and I’ve

definitely learned a lot regarding which

phones to get, steps to using your PC’s

Internet access via Bluetooth and lots of

other things.

 So here’s where I’m at right now. I

picked up a Nokia 3650 on eBay with the

intent of either a) using Bluetooth to get

some internet access on it and/or b) get-

ting a data only plan from T-Mobile for

real-life testing. Right now I don’t have

either of these options working.

 I didn’t realize I need a SIM card in

order to just use my phone for local test-

ing (option A). When I turn the phone on

it asks for a SIM card and I’m not sure if

there are ways around this. If there are,

someone please let me know.

 Option B is still feasible, I just don’t

know if I’m ready to get a $30 data-only

plan. Let me tell you the people at T-

Mobile weren’t very helpful in this area

either. The first person I spoke with had

no clue about data-only plans and said

they didn’t have anything like that. Finally

when someone else got involved he

confirmed it. I tried explaining how I just

wanted to do some software develop-

ment on this phone I had picked up from

a friend. After finally establishing this I

asked what my options were and if they

had any deals on any Series 60 phones

since any plans would require a one-year

contract. Asking to see what Series 60

phones they had in store got me a few

weird looks also and I think he didn’t

understand the question. There’s nothing

like going to a store and knowing more

about their products and services than

they do.

 What I’d love to see down the road to

help developers:

1. Hardware manufacturers like Nokia,

please get word out about current

trends and uses for your phones

(example: Flash Lite).

2. Mobile service providers, please take

advantage of the growing market here.

Educate your sales people and offer

some more data plan options. As soon

as Flash Lite takes off the first provider

to offer some simple data plans are

going to gain some new customers.

My plan is through Verizon right now,

but as soon as a I see a cheap and easy

plan for my Flash enabled phone I’m

going to either completely switch over

or have 2 plans going.

3. Either of the above companies, it

would be great to see you at some

of the upcoming Flash conferences

(FlashForward, MAX 2005, etc). Being

able to talk to some representatives

who are familar with Flash would be

awesome.

 Might be a lot to ask for, but why not.

It’s still a grey area for Flash developers

and I’m sure it’ll get better. I know I’ll find

some way to get this phone working

soon.

Blog Topic: Dreamweaver
Coming Back Around to

Dreamweaver
by rich rodecker

From http://www.visible

-form.com/blog/

 Lately I find myself being pulled back

into liking Dreamweaver. I had stopped

using it for a long time becasue I had felt

it was too bloated, and offered up a lot

of features I didn’t need. What happened

then was that I had separate apps open

for coding my PHP and XML files, and

then a separate app for my ftp.

 What I’m really appreciating now

is that I can code most of my files in

one place (PHP, XML...not ActionScript

though, that still stays with SEPY), and

upload and test them with one key com-

mand. That’s a welcome change form

editing my code in one editor, switching

to the ftp editor to upload, then opening

the page in the browser to test. I know

Eclipse can probably do the same thing,

but eclipse...I dunno I just can’t get into it.

too clunky?

 The Site Manager is pretty sweet too,

it really helps keeps thing organized, and

it’s pretty cool to be able to jump back

and forthe between different sites just by

selecting from a drop down (in the files

panel).

 There’s some downsides too. I still

don’t wind up using like half the panels

available to me. I wish there was an

option to only load the panels I need, in

order to make the startup faster...then be

able to load them as necessary (that wish

applies to all software). I know I can open

and close panels at will but it’s not the

same thing.

 The live data feature is pretty cool,

but it still get all sort of wonky. Being that

I can test my files live with a click of a but-

ton, I really don’t care about that (or use

that feature) anyway. The reference panel

needs some work too.

 I wonder what will happen now with

the Adobe merger and Macromedia join-

ing the Eclipse Foundation? I think DW

would actually improve with some help

from an Adobe UI.

7 • 2005 MXDJ.COM • 9

ith our tunes playing

and the volume knob to

about the 3:00PM posi-

tion (I prefer it loud), let's

get started. First you need to create some

content to drag. I just made some nice

looking mockup boxes for now.

 With the content boxes created they

need instance names. Anything will work,

just give them appropriate and easy to

remember names. In my case I gave them

the instance names news and images

accordingly.

 Ok with the ‘design’ section out of the

way now it’s time to get dirty with some

ActionScript. I like to keep everything on

a frame in the main timeline. It allows all

my code to be easily accessible and even

allows me to shorten code! We’ll get to

that later but for now we need to figure

out how we’re going to set this up.

 To remember where the objects are

dragged to we’re going to have to use

the shared object. Shared object is an

extremely useful tool when designing

Flash applications. It’s exactly like a cook-

ie but specific to Flash. It is a special beast

though. The special object doesn’t allow

data to be directly written to it like so:

sharedObj.data.myName = “Sam”;

All data that is to be written to the

shared object has to be by reference.

For example:

var name:String = “Sam”;

sharedObj.data.myName = name;

 This isn’t a problem however as we

only have to slightly change how we

design the code portion of this project.

With that sorted out let’s define the

three variables we’ll need for this project

– positions array, instances array, and the

shared object itself.

//Insert your own instance names into

the array

var instances:Array = [_root.news,

_root.images];

var so:SharedObject = SharedObject.

getLocal(“pps.com/tutorial/userPosi-

tions”);

var positions:Array = [[],[]];

 I chose to have the positions of the

movie clips in the instances array stored

in a 2d array. I could have used objects

with the properties x and y in a 1d array

but I just like arrays. The positions will

also be stored in the shared object as a

2d array named posArr. Now onto writing

the functions we need.

 For each movie clip that we want to

be draggable on stage we have to write a

handler. You can imagine that this would

be a pain because for each instance we’d

have to write these handlers.

mc.onPress = function(Void):Void{

 this.startDrag();

}

mc.onRelease = function(Void):Void {

 this.stopDrag();

}

 But (bum bum bummm!) thanks to

some clever coding, we can use a for loop

to loop through an array we take in as a

parameter to set all our handlers. Let's

begin function header and the for loop.

(Note: I personally prefer putting all the

functions etc. I write above where I define

my vars. It helps keep code more orga-

nized.)

function setHandlers(mcs:Array):Void {

 for(var a:Number = 0; a <= mcs.

length-1; a++){

 Now we need to set up the on press

and on release handlers of our movie

clips, then just close the for loop and

function.

 mcs[a].onPress = function(Void):

Void{

 if(this.onEnterFrame){

 delete this.onEnterFrame;

 }

 this.startDrag();

 }

 mcs[a].onRelease =

function(Void):Void {

 this.stopDrag();

 setPositions(); //inserts

object’s x/y coords into SO

 }

 }//end for a

}//end setHandlers

Q. Why are we checking for a nonexis-

tent on enter frame handler?

A. Don’t worry for now, it’ll be clear later on

why we need this if test.

Q. What’s this setPositions function

about?

A. The setPositions function is the func-

tion we’re about to write that will actually

update the shared object with the positions

of our elements on stage.

 The set positions function is extreme-

ly simple. First we have to use a for loop

movies

Harnessing Shared Objects

How to make use of draggable Flash elements
by sam coles

w

“Shared object
is an extremely

useful
tool when

designing flash
applications.”

10 • MXDJ.COM 7 • 2005

to go through the instances array we

defined earlier.

function setPositions(Void):Void {

 //Cycle through all the instances

 for(var a:Number = 0; a <=

instances.length-1; a++){

 Now, we could just reset every

instance’s x/y coordinates but that’d take

extraneous processing power if they

hadn’t been moved. Because of that we

just need to have a simple if test to check

if the x or y coordinates of the movie clip

in question are different then those in the

array.

 if(instances[a]._x !=

positions[a][0] || instances[a]._y !=

positions[a][1]){

 positions[a][0] =

instances[a]._x;

 positions[a][1] =

instances[a]._y;

 }

 }//end for a

 With our if test done and for loop

closed we just have to set the shared

object’s 2d array posArr to positions.

 so.data.posArr = positions;

 so.flush(); //force so to write

}//end setPositions

Q. Wait up a second, wouldn’t we have

to use slice to copy over the positions

array since it’d be passed by reference?

A. Although this would be the case any

other time you wanted to completely copy

an array the shared object is an exception.

 Now that we have the setHandlers

and setPositions functions written we

only have one more function to write.

Although it’s the longest function it’s

by no means the hardest. This function

is of course the placeMovieClips func-

tion. Lets begin by writing the func-

tion header. Now we’ll probably want

to take in the array with the instance

names and the shared object’s position

array as parameters. We do this for two

reasons—increased flexibility and to

shorten so.data.posArr to a much sim-

pler name.

function placeMovieClips(mcs:Array,

pos:Array):Void {

 Now we’re going to have to loop

through all the instances in the mcs array.

We can save some CPU here by having

an if test right off the bat to see if the

current item we’re examining in the mcs

array isn’t in the position that’s stored in

the shared object.

 for(var a:Number = 0; a <= mcs.

length-1; a++){

 if(mcs[a]._x != pos[a][0] ||

mcs[a]._y != pos[a][1]){

 Onto some easing! We need two

values right off the bat – the x destina-

tion, and the y destination. Now since it’s

impractical to retrieve values from the

shared object from an on enter frame the

best option is to use local variables. In our

case there’s two: xDest, and yDest.

 mcs[a].destX = pos[a][0];

 mcs[a].destY = pos[a][1];

 Now we have to set up the on enter

frame for the movie clip. Easing is often

portrayed as a very hard subject when

in fact it’s extremely simple. The easing

we’re going to be using works off the

difference between the destination x or

y coordinate versus the current x or y

coordinate. By adding a fraction of the

x and y difference to the current x and

y coordinates we get a nice exponential

easing effect. But as some of you may or

may not know this has a problem inherit

to exponential decay. The amount we add

to the x and y never reaches 0. To circum-

vent this waste of CPU we need to check

if |xDist| and |yDist| are greater than one.

Enough talk, lets code this bad boy.

Q. Why do we have to use absolute

value?

A. If we didn’t use absolute value the easing

wouldn’t work because xDiff and yDiff can

both be negative so we have to force them

to be positive.

mcs[a].onEnterFrame = function(Void):

Void {

 //Get the differences

 var xDiff:Number = this.

destX-this._x;

 var yDiff:Number = this.

destY-this._y;

 trace(“XD:”+xDiff);

 trace(“YD:”+yDiff);

 //check if |yDiff| and

|xDiff| >1

 if(Math.abs(yDiff) > 1

&& Math.abs(xDiff) > 1){

 //add to x and y

 this._x += xDiff/8;

 this._y += yDiff/8;

 Now we have to write an else that

will stop the easing outright. To do this

we need to write an else that first places

the movie clip to the destination x and y

coordinates and second kills the on enter

frame of our movie clip.

 }else{

 this._x = this.xDest;

 this._y = this.yDest;

 trace(“OEF Killed”);

 delete this.onEnter-

Frame;

 }

 }//end OEF

 }//end if

 }//end for a

}//end func placeMovieClips

 Ok we’re almost done; we only have a

few more lines of code to insert. We need

to put this code below where we defined

all our variables earlier. We just have to

execute setHandlers and execute the

placeMovieClips function if the shared

object has been written to before.

setHandlers(instances);

if(so.data.posArr != null){ //check if

so has been written to before

 placeMovieClips(instances,

so.data.posArr);

}

 Test your movie and it should come

out something like this (move the ele-

ments then refresh to see easing). I bet

you can’t guess what song the lyrics are

from!

sjcoles@charter.net

7 • 2005 MXDJ.COM • 11

�������������������������������

���

���������������������������������������

��

���

���������������������

������������������������

�������������������

������������
12 • MXDJ.COM 7 • 2005

�������������������������������

���

���������������������������������������

��

���

���������������������

������������������������

�������������������

������������

 Through this tutorial, you’ll create

your very own Flash Panel to control the

rotation of Movie Clips on the stage using

standard Flash MX 2004 components,

a hefty sprinkling of ActionScript and

some tips and tricks along the way. I hope

you’ll come away from this tutorial feel-

ing empowered to create your own Flash

Panels, and to explore the capabilities

and possibilities of Flash MX 2004 – and

your own mind!

 Before we set out on this extensibility

trip, let me point out a couple of resourc-

es that will be invaluable in your pursuit

of Flash Panel excellence:

• Flash MX 2004 JavaScript Dictionary:

An invaluable bible that contains

nearly all the Flash API information

that you’ll ever need. (http://www.

macromedia.com/support/documenta-

tion/en/flash/#flashjsdict)

• JSFL File API: Not included in the Flash

MX 2004 JavaScript Dictionary; func-

tionality added in Flash MX 2004 7.2

udpater. (http://www.macromedia.com/

devnet/mx/flash/articles/jsapi.html)

 The creation of Flash Panels for use

in Flash MX 2004 basically hinges around

the understanding and use of the JSAPI

(JavaScript API). It’s based on a Document

Object Model (DOM), which allows both

Flash Documents and the internal func-

tions of Flash MX 2004 to be accessed via

simple JavaScript-based commands.

 Since the release of Flash MX 2004,

many JSFL (Flash JavaScript) commands,

Flash Panels and custom tools have been

created to help automate tasks and add

custom interfaces to complex controls

that directly influence feedback in the

Flash authoring environment. Most of

these are easily found via search (use

‘JSFL commands’ or ‘Flash Panels’ as your

keywords).

 If you’re comfortable with

ActionScript, pushing the boundaries to

develop your own custom commands

and panels is hardly a leap of faith – it’s a

small step forward. As the JSAPI is based

around the Netscape JavaScript API and

Flash’s Document Object Model, develop-

ing and writing Flash JavaScript should

be a natural progression.

 By their very nature, Flash Panels are

exported SWF files. However, they’re

subtly different from the standard JSFL

files that are used to create commands,

as they utilise a wrapper function called

MMExecute(). This allows interaction

between the compiled SWF and the Flash

MX 2004 API.

 Consider the following line of JSFL,

which returns the current width of the

first selected item on the stage:

var objectWidth= fl.getDocumentDOM().

selection[0].width;

In order to gain the same functional-

ity within your SWF Panel, this code

needs to be changed as follows:

var objectWidth=MMExecute(“fl.getDocu-

mentDOM().selection[0].width”);

 If we examine the code contained

within the MMExecute(“JavaScript String”),

we’ll note that it’s exactly the same piece

of Flash JavaScript we saw above. The only

difference is that it’s now encapsulated

within the wrapper. The MMExecute()

function takes the Flash JavaScript string

as a single argument and passes it to the

Flash API. It’s then processed and a return

value is optionally given. This value can

then be assigned to a variable.

Flash Panel Location
 All the major Flash Panels can be

found in one simple location within the

authoring environment. Simply select

‘Window > Other Panels >’ to access it in

Flash MX 2004.

 When you’re creating Flash Panels and

testing in the live environment, keep the

following locations in mind. These are the

folders in which Flash MX 2004 locates

the custom panels:

Windows 2000 or Windows XP

Drive:\Documents and Settings\user\

Local Settings\Application Data\

Macromedia\Flash MX 2004\language\

Configuration\WindowSWF

Windows 98

Drive:\Windows\Application Data\

Macromedia\Flash MX 2004\language\

Configuration\WindowSWF

Mac OS X

Drive:/Users/userName/Library/

Application Support/Macromedia/Flash

MX 2004/language/Configuration/

WindowSWF

 We will make use of these directory

locations later, when we test and deploy

the extension.

Inspiration
 Sometimes when you’re working,

you suddenly think ‘Gee, wouldn’t it be

quicker if I could automate [Insert Task

Here]?’ More often than not, the answer

is usually, ‘Yep, it’d be great to automate

that task ...but how on earth do I do it?’

 Enter: Flash Panels... Actually, it’s not

just the automation of tasks that warrants

the creation of Flash Panels; the need for

can stem from any of the following (and

some other) requirements:

• Automation: Automate often laborious

and time consuming tasks within Flash

MX 2004 (Code Addition, Timeline

Effects)

• Speedier Access: Quicker access to

menu hidden commands

• GUI Control: Add a GUI to control real-

time effects (rotation, scaling, position

etc)

 The creation of a Flash Panel can be a

daunting task, which is why you need a

clear goal for the panel before you begin.

Once you decide specifically what you

want the panel to do, you’re already most

of the way to creating the panel (apart

from the obvious coding and hooking

into the interface).

 The next step is to sketch the process

flow of the command (how it all works)

either on paper, or in a text editor of your

choice.

 Note: when I’m working in Flash,

I always keep next to me a notebook

that’s dedicated to ideas/workarounds.

Sometimes, as you’re working away, a

need or idea will spring into your mind

that you can automate, speed up, or add

an interface to, in order to make your life

– and those of your colleagues – easier.

Keep a list of these ideas so that those

fleeting thoughts are never lost and

everyone may benefit from the creation

of your time-saving panel!

 In the example that we’re about to

create, we will use a single instance of the

NumericStepper component to control

the rotation of Movie Clips. Consider the

following diagram, which shows the com-

mand process flow of the command we’re

about to create in Flash MX 2004:

 To this, we’ll add a change event

handler to catch when the value of the

NumericStepper component increases

or decreases. When the value changes,

the event handler will trigger a function

7 • 2005 MXDJ.COM • 13

called rotateMe(), which contains all the

Flash JavaScript encapsulated in the

MMExecute() wrapper function, which is

necessary for the function to carry out its

given task.

Anyone for a History
Lesson?
 The History Panel (Window > Other

Panels > History), can be a useful insight

into the inner workings of Flash MX 2004.

When you’re looking to recreate an effect

via scripted methods, the History Panel

can be a good place to start.

 During the majority of your user inter-

action with the application on the stage,

if you have the History Panel open, you’ll

notice events appearing within it. This is a

visual representation of the communica-

tion history between you the user and

the application in JSFL.

 The majority of elements within the

history can be copied to the clipboard

and pasted into your favourite text edi-

tor for investigation, except those beside

which a red cross appears.

 If you’re trying to identify the relevant

API reference to carry out a given stage-

based task that you’re trying to automate,

and you can’t find it withinthe Flash MX

2004 JavaScript Dictionary, execute the

task on the stage, and simply copy and

paste from the History Panel. It makes an

excellent starting point for your own cus-

tom commands!

 You may also save selected steps (but

not those denoted with a red ‘x’) as a

command, which will be made available

from the ‘Commands’ menu provided it

doesn’t require any user interac-

tion.

Creation
 Enough with the introduction!

Let’s dive into creating a com-

mand that rotates the Movie Clips.

Create the Rotator
Flash Panel
 I’ve provided the code for the

panel here ()The RotatorStart.fla

contains the timeline layer struc-

ture and the background image

for the panel. The finished FLA for

this example is called RotatorFinal.

fla.

 If at any time you need to look

up the process flow for the func-

tion, refer to the diagram shown

above.

Setting the Scene
 Our first course of action is

to add the component that will

control the effect; as the background and

layers have already been set up, we need

only to add a single component to the

stage before we insert the controlling

ActionScript.

 Of course, it goes without saying that

the more complex the panel, the more

controls you may have on screen at any

one time. I’ll leave it to you to experiment

with your own creations after you’ve cre-

ated this simple but effective example.

1. Open the starting point FLA

(RotatorStart.fla from the code

archive) and drag an instance of the

NumericStepper Component from

the ‘UI Components’ section of the

Components Panel onto the first

frame of the ‘Interface’ layer. Name the

instance stepSizer.

2. Position the NumericStepper com-

ponent instance centrally over the

rounded rectangle background, and

change the default parameter values

to the following:

 • Maximum: 360

 • Minimum: 0

 • stepSize: 5

 • Value: 45

3. Save your Flash Document to a loca-

tion of your choice.

4. Copy the JXLFLAPI.as file from the

code archive to the location of your

saved FLA. (this is a JSFL Wrapper that’s

used to simplify some tasks).

 Now that we’ve created the inter-

face, we need to add the controlling

ActionScript to bring the effect to life.

Add the ActionScript
 It’s pretty obvious, but the more

things that your panel tries to accom-

plish, the more complex both the

ActionScript and the encapsulated JSFL

becomes.

 In this example, the code is pretty

simple and linear, but as you create your

own Flash Panels and begin to extend

Flash MX 2004, things can get a little

more complex. For this reason, it’s often

extremely helpful to sketch out the data

flow of your command, as I mentioned

earlier. You won’t regret it!

5. Select the first frame of the Actions

layer and add the following code

within the Actions Panel:

//Stage Controls

Stage.align = “TC”;

Stage.scaleMode = “noScale”;

Stage.showMenu = false;

//Flash API Wrapper (Courtesy Jesse

Warden)

#include “JXLFLAPI.as”

//Main Rotation Function

function rotateMe()

{

 var selectionChecker = MMExecute(“fl.

fi
g

u
re

 1

fi
g

u
re

 2

fi
g

u
re

 3

14 • MXDJ.COM 7 • 2005

getDocumentDOM().selection.length”);

 if (selectionChecker == 1)

 {

 //Reset Transformation Points to

allow easy rotation

 MMExecute(“fl.getDocumentDOM().

resetTransformation()”);

 //Get Selection Width and Height

 var objectWidth = MMExecute(“fl.

getDocumentDOM().selection[0].width”);

 var objectHeight = MMExecute(“fl.

getDocumentDOM().selection[0].

height”);

 //Calculate Center Points

 var objCenterHorz = int(objectWidth

/ 2);

 var objCenterVert =

int(objectHeight / 2);

 //Move Transformation Point to Dead

Center (Helps when rotating)

 MMExecute(“fl.getDocumentDOM().

setTransformationPoint({x:” + Math.

floor(objCenterHorz) + “, y:” + Math.

floor(objCenterVert) + “})”);

 //Get Rotation Value

 var incrementer = stepSizer.value;

 //Rotate Selection

 MMExecute(“fl.getDocumentDOM().

rotateSelection(“ + incrementer +

“)”);

 //Align H/V to Center of Stage

 MMExecute(“fl.getDocumentDOM().

align(‘vertical center’, true)”);

 MMExecute(“fl.getDocumentDOM().

align(‘horizontal center’, true)”);

 //Update Preview Information

 } else

 {

 break;

 }

}

//==========================

//Miscellaneous Functions

//==========================

//Middle Mouse Wheel Support

//==========================

var mouseListener:Object = new

Object();

mouseListener.onMouseWheel =

function(delta)

{

 stepSizer.value += delta;

};

Mouse.addListener(mouseListener);

//==========================

//Create Event Handler / Dispatcher

for Numeric Stepper

//==========================

stepsListener = new Object();

stepsListener.change = function()

{

 rotateMe();

};

stepSizer.addEventListener(“change”,

stepsListener);

//Numeric Stepper Event Handler Ends

 Let’s step through the code and see

how it fits together. First, we set the main

stage settings, aligning the contents of

the stage to TC (Top Centre). We switch

off the ability to zoom in, and stop the

right click menu from appearing.

//Stage Controls

Stage.align = “TC”;

Stage.scaleMode = “noScale”;

Stage.showMenu = false;

 We then include a nifty JSFL wrapper

from Jesse Warden (www.jessewarden.

com), which allows us to encapsulate

some flavors of JSFL without needing

to worry about sometimes complex

single and double escape strings in the

MMExecute() function.

#include “JXLFLAPI.as”

 Note: Using the JSFL wrapper, we can

simplify the following trace statement:

MMExecute(“fl.trace(\”Tracing to the

Output Panel\”)”);

 The JSFL wrapper simplifies the code

as follows:

flapi.trace(“Tracing to the Output

Panel”)

 Moving on through the process flow

of the panel, we must consider the listen-

er object for the NumericStepper compo-

nent instance that we have on the stage.

We use the change event so that, when

the user clicks the up or down controllers

of the NumericStepper, the rotateMe()

function is called:

stepsListener = new Object();

stepsListener.change = function() {

 rotateMe();

};

stepSizer.addEventListener(“change”,

stepsListener);

 The rotateMe() function is called every

time the listener object detects that the

selected value of the NumericStepper

component has changed. If we refer to

the previous process flow diagram, we

can see clearly the chain of events that

occurs.

 First of all, we check that the user

has selected only a single item from the

stage:

var selectionChecker =

MMExecute(“fl.getDocumentDOM().selec-

tion.length”);

if (selectionChecker == 1) {

 We then reset the transformation

point of the object to a central location.

The reason for this is simple: when we

rotate the object, it rotates around this

transformation point. If the transforma-

tion point is off-centre, it can be difficult

to gauge what’s going on. Resetting the

transformation point to the centre point

of the object using the object’s width

and height makes the rotation easier to

observe and keeps things tidy.

//Reset Transformation Points to allow

easy rotation

MMExecute(“fl.getDocumentDOM().

resetTransformation()”);

//Get Selection Width and Height

var objectWidth =

 MMExecute(“fl.getDocumentDOM().

selection[0].width”);

var objectHeight = MMExecute(“fl.

getDocumentDOM().selection[0].

height”);

//Calculate Center Points

var objCenterHorz =

int(objectWidth/2);

var objCenterVert =

int(objectHeight/2);

//Move Transformation Point to Dead

Center (Helps when rotating)

MMExecute(“fl.getDocumentDOM().

setTransformationPoint({x:”+Math.

floor(objCenterHorz)+”, y:”+Math.floor

(objCenterVert)+”})”);

 We then get the current value

of the NumericStepper Component,

store it in the incrementer variable,

and rotate the selection accordingly

using rotateSelection(value). As the

NumericStepper component facilitates

Steven Grosvenor is

founder of phireworx.

com, a Fireworks

resource site. Steven

is author of Flash

Anthology : Cool

Effects & Practical

Actionscript,and

contributing author

of Fireworks MX

Magic (New Riders),

Special Edition

Using Fireworks MX

(Que), and Fireworks

MX Fundamentals

(New Riders). He

has also authored

numerous articles

on the Macromedia

Developer Center

16 • MXDJ.COM 7 • 2005

��������������

��

�����������������������

���

���

�������������������������������

��������������������������

���������������������������

��������������������������������

����������������������������
�����������

���������������������������������������
���
���������������������������������������

the use of continuous feedback by hold-

ing down the direction buttons, this can

lead to a pleasing and functional effect.

//Get Rotation Value

var incrementer = stepSizer.value;

//Rotate Selection

MMExecute(“fl.getDocumentDOM().rotateS

election(“+incrementer+”)”);

 Finally, we align the object centrally

to the stage while rotating it. It’s a per-

sonal choice of mine to add this code. If

it’s omitted, the object can drift as a result

of the way Flash MX 2004 applies the

centralised transformation point (see the

earlier discussion).

//Align H/V to Center of Stage

MMExecute(“fl.getDocumentDOM().

align(‘vertical center’, true)”);

MMExecute(“fl.getDocumentDOM().

align(‘horizontal center’, true)”);

 That’s all we need to do in order

to rotate the selected object; how-

ever, there’s an additional snippet of

ActionScript that will give the Flash Panel

middle mouse wheel support. This allows

us to increase or decrease the value of

the rotation either by clicking on the

up and down arrows, or by scrolling the

mouse wheel up or down. This utilises the

same methodology as the event handler

for the NumericStepper component, but

uses the onMouseWheel event handler

to increase or decrease the component’s

value.

var mouseListener:Object = new

Object();

mouseListener.onMouseWheel =

function(delta) { stepSizer.value +=

delta;

};

Mouse.addListener(mouseListener);

6. Save your Flash document, and export

the SWF with a suitable name to your

Flash MX 2004 ‘WindowSWF’ directory

as follows.

Windows 2000 or Windows XP

Drive:\Documents and Settings\user\

Local Settings\Application Data\

Macromedia\Flash MX 2004\language\

Configuration\WindowSWF

Windows 98

Drive:\Windows\Application Data\

Macromedia\Flash MX 2004\language\

Configuration\WindowSWF

Mac OS X

Drive:/Users/userName/Library/

Application Support/Macromedia/Flash

MX 2004/language/Configuration/

WindowSWF

7. Restart Flash and access the panel

from Window > Other Panels > [Name

of Exported SWF]

 To use the command, simply select a

single object from the stage, then use the

controls within the Flash panel to control

rotation of the object. Now you have a

fully functional Flash Panel that controls

the rotation of your object in a quick,

defined and timely manner!

 Note: I usually use the Flash JSFL

Wrapper to trace out information to

the Output Panel during the develop-

ment phase. For example, if in this case, I

wanted to trace out the current value of

the NumericStepper component when

middle mouse wheel was scrolled, I

would add to our code the lines denoted

in bold.

var mouseListener:Object = new

Object();

mouseListener.onMouseWheel =

function(delta) {

 flapi.trace(“Object rotation is now

“+stepSizer.value+ “ degrees”);

 stepSizer.value += delta;

};

 Note also that there are a couple of

extra functions I’ve included at the end of

this article to help you on your way!

 Now all that remains is to package the

SWF into a manageable MXP file that can

be installed onto your machine, or com-

puters of your colleagues or anyone that

you wish!

Implementation
 Before we package the Flash Panel

into a distributable format, there are a

couple of ‘gotchas’ that we need to exam-

ine!

Updating The Panel While
Still in Flash MX 2004
 When you make changes to the

interface of, or add code to, your Flash

 Here are a few of extra functions to

help you on your way with the develop-

ment of Flash Panels.

Show an Alert
 When called from a compiled SWF, this

simple piece of code will produce an alert

within Flash MX 2004.

errMsg = “alert(‘Please Save Your FLA

before Applying the Effect’);”;

MMExecute(errMsg);

Check the File is Saved
 This next section of code will check to

see whether the current document has

been saved or not, and carries out a con-

ditional function:

function checkDocumentIsSaved() {

 var fileDestinationTemp =

MMExecute(“fl.getDocumentDOM().path”);

 if (fileDestinationTemp != “unde-

fined”) {

 //Document is Saved, do something

 } else {

 //Document is NOT Saved, do some-

thing

 }

}

Iterate Through Selected
Stage Objects
 This simple code will iterate through

an array of currently selected objects on

the stage. This can be extremely useful to

change en masse properties of groups of

selected objects:

var objLength = MMExecute(“fl.getDocu-

mentDOM().selection.length”);

 for (var i = 0; i<objLength; i++)

 {

 //Do Something to the selected

object here

 flapi.trace(i);

 }

Extra
Functions

18 • MXDJ.COM 7 • 2005

Panel projects, you will obviously need

to export your updated SWF to the

‘WindowSWF’ folder. However, in order to

see the updates, you’ll need to close the

panel by clicking the window ‘x’ button

when the panel is undocked and reopen

it from the ‘Window > Other Panels >’

menu, rather than selecting ‘Close Panel’

from the Options flyout. The reasoning

behind this is that clicking the ‘Close

Panel’ option seems merely to hide the

panel from view, rather than properly

closing it and releasing it from memory.

Name the Exported SWF
 I’ve experienced several ‘Name

Clash’ issues when developing exten-

sions for Flash MX 2004, and they can

be slightly irritating – to say the least!

Sometimes, when you export a SWF to

the ‘WindowSWF’ directory and attempt

to open the panel within Flash MX 2004,

a different panel opens!

 There is apparently no workaround for

this – you simply have to change the name

of the SWF until it opens the correct panel

when you select the panel from Window

> Other Panels > [Your Panel]. To me, it

looks like Flash MX 2004’s built-in directory

parsing uses a simple regular expression

to iterate through the directory, and it can

easily get confused! Hopefully, this will

be rectified in the next minor (or major)

release of Flash MX 2004.

Package Your Panel
 In order to make your shiny new panel

easily shareable, you need to create an MXP

file that can be installed with the Macromedia

Extension Manager. The first step is to create

an MXI file that the Extension Manager can

use to compile the MXP file. The MXI is essen-

tially an XML file that contains simple informa-

tion about the extension: version information,

extension name and description, as well as

the files to compile.

 Note that an example .mxi file is

included within the article source code,

so you can alter it for your needs.

 Although it’s outside the scope of this

article to describe all the options avail-

able to those creating distributable MXPs,

I’ll cover some of the basics here to get

you started.

 In order to create an MXI file for the

Flash Panel we’ve just created, open your

favorite text editor and add the following:

<?xml version=”1.0” encoding=”UTF-8”?>

<macromedia-extension

 name=”Rotator Panel for Flash MX

2004”

 version=”1.0.1”

 type=”Command”

 requires-restart=”true”>

 <author name=”Phireworx” />

 <products>

 <product name=”Flash” version=”7”

primary=”true” />

 </products>

 <description>

 <![CDATA[

 Happily rotate your objects in Flash

MX 2004 using this Simple Panel

]]>

 </description>

 <ui-access>

 <![CDATA[

 Access to the command panel is by

selecting ‘Window > Other Panels

> Rotator Panel’ in Flash MX 2004.

]]>

 </ui-access>

 <license-agreement>

 <![CDATA[

]]>

 </license-agreement>

 <files>

 <file source=”Rotator Panel.swf”

destination=”$flash/WindowSWF” />

 </files>

</macromedia-extension>

 The MXI file contains different infor-

mation, all of which can be easily under-

stood and edited to suit your own needs.

Here’s a quick overview of where the

information is located:

• Author Name: Within the <author> tag

name attribute

• Description: Within the <description>

tag

• Access and Usage Instructions: within

the <UI-access> tag

• Source File: within the <file> tag

source attribute

• File Destination: the location at which

you should install the file is within the

<file> tag destination attribute

 The most important section is the name

of the SWF file that we are going to add:

 <file source=”Rotator Panel.swf”

destination=”$flash/WindowSWF” />

 We simply place the name of the

exported SWF into the ‘file source’ sec-

tion, and add the ‘WindowSWF’ directory

as the destination ($flash/WindowSWF).

 Note that the name of the exported

SWF file that you include within the exten-

sion will appear as it does in the Flash MX

2004 menu system under ‘Other Panels’.

 Once you’ve edited the options to

your needs, save the file with the exten-

sion .mxi (e.g. Rotator Panel;.mxi).

 Now, you can double-click the

MXI file, and (if Macromedia Extension

Manager is installed), you’ll be prompted

for an extension (MXI) to package. You’ll

also be asked for a name by which the

extension package (MXP) can be saved.

The Macromedia Extension Manager

automatically creates the MXP file, which

can then be distributed as you see fit!

 I’ve only skimmed the surface of creat-

ing your own custom Flash Panels in this

article, but I certainly hope that this infor-

mation has given you the incentive to cre-

ate your own Flash Panels! Don’t be afraid

to experiment with your own cool effects

and ideas for panels and commands. .

fi
g

u
re

 4
fi

g
u

re
 5

20 • MXDJ.COM 7 • 2005

agCloud is an automated

Folksonomy tool. Essentially,

TagCloud searches any number

of RSS feeds you specify, extracts

keywords from the content and lists

them according to prevalence within the

RSS feeds. Clicking on the tag’s link will

display a list of all the article abstracts

associated with that keyword.

 Previously the only way to get

TagCloud feeds to display on your web-

site, etc. was to include a bit of javascript

(as an include) in your page. Which meant

you have almost no control outside of

CSS on how that data was presented. It

worked, it just wasn’t as flexible as some

might like. Now, you’re able to get at any

particular feed using XML as your data

source!

 Part of the reason I used Flash to

render my XML data was the fact that

I couldn’t supply a target for the links

coming out of the javascript fetch. So if I

had access to all the data myself, I could

simply add my targets. Then I was told

by John Herren about an upcoming XML

service from TagCloud that I could play

with and test. With that, I built my appli-

cation, and thought it would be a good

thing to let others build theirs if they

wanted to. This sample application is very

simple, but if you’re fairly proficient in

Flash, you could build some pretty wild

UI.

 This tutorial assumes you have a copy

of Flash MX 2004 Pro installed. We use the

Data Binding Component and also need

to publish to Flash 7.

 Figure 1 is an example screen shot of

what the result of this quick tutorial will

allow you to put into your webpage:

 To see a live implementation of this

application, visit my website (http://www.

ericd.net/new_css/) where you’ll see it at

the top of my blog section.

Getting Started
 I will assume you already know how

TagCloud works and how you can place

it on your website. If not, please go to

TagCloud (http://www.tagcloud.com/)

and read up on it. It’s pretty simple.

 TagCloud can now supply XML

from a URL request. For instance http://

www.TagCloud.com/cloud/xml/ericd/

default/22.

 If you open that URL in Internet

Explorer, you’ll see the XML as it is

returned to the browser from TagCloud.

I previously set that cloud to include the

Fullasagoog.com flash feed. The trailing

22 in the URL means to return 22 match-

ing keywords.

 If you open the URL in Safari RSS,

you’ll see a lot of data. View Source on

the page to see the XML.

The Returned XML
 Here’s how the returned XML is for-

matted (I am not showing you all of the

XML here - you should get the idea).

 So, you see all the data you need is

there to access. Each returned keyword

is represented as a <Tag> node. And

each has a Name, Scale, and Link. The

Scale indicates the prevalence for an indi-

vidual keyword (more of those keywords

equals a larger value). The Link is a URL

where you can view the items that were

matched using that keyword.

 All we need to do now is to create a

tiny Flash application that will fetch that

information and display it.

Creating the Flash
Application
 I have included 6 files in this tutorial

source code release (see source code

link for this article). You can either rifle

through those files to learn on your own,

or follow along to get things up and run-

ning, and explained how the application

works.

 I’ll talk about that proxy file in a bit.

 Open the FLA or you can start from

scratch by recreating this simple layout:

 All you really need to be concerned

with is having a textfield set to HTML,

multiline. To the right of that is a

UIScrollbar component - set to scroll that

text field instance. Give the dynamic text

field an instance name of “links” for now.

All we are going to do is load the XML,

parse the data, format the data, and pres-

ent it as hyperlinks.

 We’re going to make parsing the

XML a lot easier than what you may

have become accustomed to with typi-

cal looping techniques. Flash 7 comes

tutorial

TagCloud Flash Integration

Easy, breezy, beautiful XML
by eric e. dolecki

t

figure 1

fi
g

u
re

 2

22 • MXDJ.COM 7 • 2005

with a basic implementation of XPath.

Xfactorstudio has some great XPath

libraries, but for this application I think it

would be overkill. If you haven’t heard of

XFactorStudio’s XPath implementations

for ActionScript, you should check them

out.

 Anyway, we need to drop a

DataBinding component on the Stage

so it can be used. Where can you find it

(it’s not listed with your normal compo-

nents)? Look here (the Classes Library):

 When you open that Library, you

should see something like this:

 Drag that DataBindingClasses com-

ponent to your Stage, then delete it. This

places the component in your own FLA’s

Library - ready for use.

ActionScript
 We’ll jump right into the ActionScript

that gets the data, and then displays it.

I’ll walk you through it below the code

block. Not much code, is there?

import mx.xpath.XPathAPI;

var myCSS = new TextField.

StyleSheet();

var cssURL = “http://www.ericd.net/

new_css/sections/TagCloud.css”;

myCSS.onLoad = function(success){

 if (success){

 links.styleSheet = myCSS;

 }

};

myCSS.load(cssURL);

var rssfeed_xml = new XML();

rssfeed_xml.ignoreWhite = true;

rssfeed_xml.load(“http://www.ericd.

net/new_css/sections/TagCloud_proxy.

asp”);

var statement:String = “”;

var sc:Number;

rssfeed_xml.onLoad = function(success)

{

 if (success) {

 var namePath:String = “/Cloud/Tags/

Tag/Name”;

 name_array = mx.xpath.XPathAPI.

selectNodeList(this.firstChild, name-

Path);

 var scale:String = “/Cloud/Tags/Tag/

Scale”;

 scale_array = mx.xpath.XPathAPI.

selectNodeList(this.firstChild,

scale);

 var titlePath:String = “/Cloud/Tags/

Tag/Link”;

 title_array = mx.xpath.XPathAPI.

selectNodeList(this.firstChild, title-

Path);

 links.text = “”;

 for (var i = 0; i<title_

array.length; i++) {

 sc = Number(scale_

array[i].firstChild.nodeValue);

 switch(sc){

 case 1:

 sc = 12;

 break;

 case 2:

 sc = 14;

 break;

 case 3:

 sc = 15;

 break;

 case 4:

 sc = 16;

 break;

 case 5:

 sc = 18;

 break;

 case 6:

 sc = 19;

 break;

 case 7:

 sc = 20;

 break;

 case 8:

 sc = 22;

 break;

 case 9:

 sc = 24;

 break;

 }

 // The line below should

be continuous... it is on

 // multiple lines here in

the tutorial for ease of display

 statement += “<a href=’”

+ title_array[i].firstChild.nodeValue

+

“’ target=’_blank’><font size=’” + sc

+ “’>” + name_array[i].firstChild.

nodeValue + “ “;

statement += “ “;

 }

 links.htmlText = statement;

 } else {

 trace(“error loading XML”);

 }

};

 /* Note: instead of

using a switch (I used a switch so it

might be easier

 to follow

along visually for those newer to

ActionScript), you could do

 this outside the

for loop below:

fi
g

u
re

 3

7 • 2005 MXDJ.COM • 23

var scales = [0,12,14,15,16,18,19,20

,22,24];

 and then

inside the loop:

 sc =

Number(scale_array[i].firstChild.node-

Value);

 sc = scales[sc];

// redefining the scale to our liking

(pixel size)

 We could also

use object properties to increase the

lookup speed,

 but there aren’t

enough possible scale values to worry

too much about that.

 *This comment

block is not in the source release.

 */

Set Up XPath
 The first thing we do is include

the XPathAPI Class so that we can

easily access XML data. You need the

DataBindingClasses component in your

Library for this to work.

Loading Our CSS
 We then want to give the links hover

states. We do this through using CSS in

Flash 7. You’ll see in the code that we

load the css file and associate it with the

dynamic HTML field set to HTML. You’ll

see the simple CSS that is loaded in the

source file I have included. This takes care

of coloring and styling any hyperlinks in

that HTML field.

Proxy File XML Load
 After the CSS loading code, you’ll

see where set up our XML load. We have

to use what is known as a proxy file to

access the data from a different domain

than your own. TagCloud does not have a

policy file on their server... security in the

player keeps you from gaining access to

other server’s data without consent. So

we use a proxy file to trick the player into

loading the data we need.

 I have included an ASP-flavored proxy

file in the source for this tutorial. You can

e-mail me at ericd@ericd.net if you have

questions.

Parse XML Data
When the XML loads, we grab data and

place it into 3 buckets (arrays). namePath

will contain an array of the data found in

the Name tag for each Tag node.

var namePath:String = “/Cloud/Tags/

Tag/Name”;

name_array = mx.xpath.XPathAPI.

selectNodeList(this.firstChild, name-

Path);

 This is the beauty of Xpath... look

how we access that data. We use a path

directly to the information we need in

the XML (each time its found, it adds to

an array which we set up). So every node

value for XML elements matching the

path are included. You don’t have to set

up cumbersome loops.

 We do the same thing for Scale and for

Title. After we build those three arrays, we

clear the HTML textfield just to be safe.

Build String to Display
 We now run a loop based on the

number of items in the title_array... in

order to build up a master string which

we will set to the HTML field. For each

tag, we take its scale value, and we run

a switch on it... setting its font size to

whatever we’d like. This is how the links

with more emphasis are larger than those

with less emphasis. You can see where we

build up the string with each loop... each

Tag added to the string until we’re looped

through them all.

 We then set the field to the value of that

string, the CSS takes over the hover links

and appearance for us, and you’re done.

Conclusion
 I hope you found this tutorial useful

- and I hope you noticed that getting a

system like this up and running is actually

pretty easy when you do it with Flash.

fi
g

u
re

 4

fi
g

u
re

 5
li
st

in
g

 1

Eric E. Dolecki is cur-

rently an Interactive

Developer/Designer at

Convoq, Inc in Boston,

MA. He has personally

won Macromedia Site

of the Day twice, has

been published in several

prominent magazines,

has co-authored numer-

ous books on Flash-

technology, and has

won several international

Flash awards. He main-

tains his personal site

(www.ericd.net) where

he showcases experi-

ments, shares informa-

tion, and offers help to

those seeking to learn

more about Flash and

interactive technology.

You can subscribe to

Eric’s new podcast within

iTunes by using this

URL:http://feeds.feed-

burner.com/Version60.

ericd@ericd.net

24 • MXDJ.COM 7 • 2005

Tip #1: Neat Fix - onLoad
Bug
 I have heard so many people moan on

the many community forums and mailing

lists about the onLoad event handler not

working with loadMovie and although I

have already posted a fix for the problem

(http://www.actionscripts.org/forums/

showthread.php3?threadid=13830), I

found this very small and functional fix

that does the same thing, a while ago on

the Flashcoders Mailing List: http://chat-

tyfig.figleaf.com/mailman/htdig/flashcod-

ers/2002-October/049415.html and so

if you see the question, forward people

to http://chattyfig.figleaf.com/apache2-

default/.

Tip #2: Bug – Sound.load-
Sound & GetRight
 If you have GetRight (http://www.

download.com/GetRight/3000-2071_4-

10005533.html) installed on your

computer, a download management

utility, and you view a Flash movie that

attempts to load an mp3 sound file into

the Flash Player dynamically using the

Sound.loadSound method, GetRight

stops the loading of the mp3 file and

asks you to choose a location to save

the mp3 file on your local computer;

whether you choose to download the

file or not, Flash still does not load the

file into the player, which raises an

issue.

 GetRight is one of the most, if not the

most popular download utility and this is

the default behaviour of the program, of

course these settings can be changed, by

removing the hook for mp3 files but Flash

alone cannot do this automatically for

you, this is a manual process that viewers

of your site will have follow if they want

to listen to dynamically loaded sounds on

your site...

 To fix the problem, I assume that by

changing the file extension of your mp3

files to something which is not registered

as a download hook in GetRight will do

the trick, but of course, if GetRight actu-

ally checks the MIME -type of the file

instead of using the files extension, then

this will not solve the problem. Changing

the mime-type is not only a complex

process for novices, it will not solve the

problem, because the Flash Player will

not play the file if its MIME-type is not set

to type mp3.

Tip #3: Stage.showMenu
 It is all in the name, Stage.showMenu

is a Boolean property of the Stage object

that defines whether to display the menu

or not, when the user right-clicks on your

Flash movie.

 A boolean value is either true or false,

0 or 1, on or off, the Stage.showMenu

value can either be true or false:

true - Show the menu on right-click

false - Down show the menu on right-

click

 Please bear in mind, that this isn not

the answer to all our prayers, when you

turn the right-click menu off, the ‘About

Flash 6 Player’ and ‘Settings’ options

are still displayed, so no, you cant ‘fully’

remove the right-click menu. The action-

script:

//turn off the right-click menu

Stage.showMenu=false;

Tip #4: System.security.
allowDomain
 This undocumented method grants

permission for the specified domain(s)

to access objects and variables in the

Flash movie that calls the allowDomain

command. This property had to be imple-

mented because of the changes made

to the Security Sandbox in the Flash 6

Player...

 I have two movies, ‘a.swf’ and ‘b.swf’,

‘a.swf’ is located on www.flashguru.co.uk

server and ‘b.swf’ is located on www.mac-

romedia.com server, for ‘a.swf’ to be able

to access the contents of ‘b.swf’, ‘b.swf’

has to make a call to the allowDomain

command as follows:

System.security.allowDomain(“http://

www.flashguru.co.uk”);

 The domain can be formatted in

numerous ways, the same different

formats that the loadVariables, loadVari-

ablesNum, xml.load and loadvars.load

methods accept: http://www.domain.com

http://domain.com

domain.com

http://IpAddress

 You can pass multiple domains to the

method as arguments. This method has

been documented in the Macromedia

Flash MX ActionScript Dictionary Errata

(http://www.macromedia.com/support/

flash/documentation/flash_mx_errata/

flash_mx_errata03.html).

Tip #5: Test Player – System
Keys
 By default, in the local test

player(Control > Test Movie), if you try

and press the enter key, to test some

code that uses it, your code will not

work because the player over-rides

the key press as a keyboard shortcut

to pause and play the movie, the same

goes for the tab key and other impor-

tant system keys, such as Ctrl, Shift etc...

So if you want to test your tabIndexes

in the test player, so you can use trace

and the debugger, simply select Disable

Keyboard Shortcuts from the Control

menu (Control > Disable Keyboard

Shortcuts) and your code will now

recieve the key presses. Saves me a lot of

faffing around! Think this is something

else I was slow on, these little fine details

just fly over my head.

tips

Five Flash Tips

Guy Watson shares a few quick hints
by guy watson

Guy Watson,

known to some as

FlashGuru, is an

active member of the

Flash Community

and a well respected

industry leader. He

has won numerous

industry awards for

his work and is regu-

larly invited to hop

around the world and

deliver presentations

at various industry

events.

guy@flashguru.co.uk

26 • MXDJ.COM 7 • 2005

��������������������������������������
���
���
��������������������������������
���
��
��������������������������������������
��
���
���������������������������������������
��
���
���������������������������������������
���
���������������������������������������
��
��������������������������������������
��
��
��������������������������������������
��������������������������������������
��
�����������������������������������
���������������������������������������
����������������������������������

� � � � � � � � � � � � � �
SUBTLE

������������������

28 • MXDJ.COM 7 • 2005

��������������������������������������
���
���
��������������������������������
���
��
��������������������������������������
��
���
���������������������������������������
��
���
���������������������������������������
���
���������������������������������������
��
��������������������������������������
��
��
��������������������������������������
��������������������������������������
��
�����������������������������������
���������������������������������������
����������������������������������

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �
SUBTLE

������������������

7 • 2005 MXDJ.COM • 29

 Modern operating systems, Windows

and Mac OS alike, implement a mecha-

nism called multithreading that allows

multiple tasks to take place simultane-

ously , thus interacting with users while

processing other CPU or network inten-

sive tasks.

 This article will show how you can

improve the responsiveness of your

Director based applications, through

the use of multithreaded Director Xtras.

Implementing multithreading in a

Director Xtra has been a commonly asked

question for the seven years I have been

on Macromedia’s XDK forum.

 To quote Albert Einstein “For every

problem there is a solution which is sim-

ple, obvious, and wrong”. Time and again,

I’ve seen poor solutions suggested on the

XDK forum to address the multithreading

issue. These solutions aren’t the best and

in some cases, will even crash your proj-

ect. This is what has inspired me to write

this article.

Example 1: A Board Game
Application
 Let’s assume you are building a board

game such as chess, or Othello-Reversi, or

any other board game that requires your

opponent (the computer) to “forward

think” multiple scenarios. Such an appli-

cation typically requires CPU-intensive

and time-consuming dynamic program-

ming or backtracking algorithms. Let’s

further assume you want your game to

stand out from the crowd: it must provide

an animated progress indicator provid-

ing the user with feedback on how long

it will take before the computer’s next

move. Ultimately, you may also want to

give users the ability to force the comput-

er to “Play Now” with the best move it has

at the moment. To do so, your best bet is

to code the game’s “intelligence” in a mul-

tithreaded Xtra. Better yet, assuming that

you can reuse an existing game engine

(a library or application) that implements

the required intelligence, you only need

to bridge your Director user interface

with the engine using a multithreaded

Xtra.

 Any time-consuming computation

problem can be addressed in the same

way as the game example. A few similar

scenarios could be:

• Scientific calculations involving large

matrices or complex algorithms

• Optimization problems in logistics,

manufacturing, transportation and

other areas

• Visualization applications with inten-

sive graphic processing

• Real-time data compression / decom-

pression

Example 2: Networking in
Macromedia Director
 Another context where multithread-

ing plays a key role is networking in

Macromedia Director. Assume that your

Director movie must asynchronously

send and receive information from a

remote server, say your corporate ERP.

Asynchronous means that the said pro-

cess can accept a request, return control

to the caller and then notify the caller

again when it completes. In contrast, in a

synchronous call, the said process would

hold the calling request, perform its pro-

cessing, get the result and send it back to

the originator by way of the calling func-

tion. The user interface would look frozen

in the meantime.

 Although NetLingo is able to perform

asynchronous network operations, your

Director code must keep looping and

checking the status of such an operation

so it can provide the user with feed-

back and perform an action once the

operation has been completed. The code

would also need to properly handle error

and timeout scenarios. This mechanism

is called polling. It is further discussed

below.

 Any task that can be delegated to an

external CPU falls in this category:

• Reading and writing data to a corpo-

rate server, such as an ERP, CRM, LMS,

etc.

• Tapping into custom-made enterprise

servers built with Java, .NET, etc.

• Integrating your project to a chat serv-

er, a database server, a web service,

etc.

What Is Multithreading?
 One can easily understand how a

computer linearly executes a sequence

of instructions, one after another. Any

commercial-grade CPU can only sequen-

tially process one such instruction at a

time. However, multithreading implies

that multiple actions simultaneously take

place on the same computer. How can

this be?

 Both of the above statements are true

as long as you agree to abstract the con-

cept of time. In the wonderful world of

multithreading, your application and the

CPU have different concepts of time. Your

program only deals with the Operating

System and thus assumes that its threads

are executed simultaneously. However,

while the Operating System makes you

believe this is true, down under, it juggles

with setting priorities on threads and has

the CPU process short sequences of each

so they appear to be simultaneous to

you.

Polling: Simple but
Inefficient
 A simple solution to providing users

with an interface that remains active

while performing other tasks is to have

your Lingo code continuously poll the

status of the external tasks, possibly

displaying progress information, and per-

forming a completion action in due time.

 For example, if the computer must

calculate the next move of a board game,

your Lingo code would call your Xtra,

which would create a new thread (let’s

call it the “secondary thread”), and call

the game engine with the appropriate

parameters. Your Xtra would immediately

resume in the main thread and return

control to Director. Then, your Lingo code

would need to continuously loop On

EnterFrame (or On Idle, or something sim-

ilar) and check a status method (let’s call

it GameBusy()). As long as GameBusy()

returns true, your Lingo keeps looping,

updating progress information, manag-

ing timeouts and error conditions, and

trying to respond to any other user

requests. In the mean time, the secondary

thread provides enough CPU time to the

game engine to compute the next move.

Whenever GameBusy() returns FALSE,

you exit the loop, call another method to

retrieve the computer’s next move and

display it to the user.

 Although polling works fine in simple

projects, it has two major drawbacks:

1. It wastes valuable CPU time.

2. It makes your code harder to write, to

read, to debug, to update and to reuse

in future projects.

 Thus, the polling solution is detrimen-

tal to both your users (who experience

slower software execution) and you (who

30 • MXDJ.COM 7 • 2005

has to spend more time coding and

debugging).

Brutal Multithreading: Simple but Wrong

An obvious way to optimize the above-

mentioned polling mechanism is to

replace it by a notification mechanism.

 For a real-world example, imagine

that you place an order at your local

electronic store for the latest super-cool

MP3 player, but the product is currently

out-of-stock. The sales associate however

promises they will receive it within the

next 10 days. One possible -- but inef-

ficient -- way for you to get your hands on

the product is to call the store every hour

or so to find out whether or not it has

arrived. This would waste a lot of time for

both you and the store and is what you

would define as a polling mechanism.

 Another and better mechanism would

be for the sales associate to phone you

once they receive the product. This is a

notification mechanism and as you can

see, is far more efficient. We will take this

mechanism and adapt it to our game

board example.

 Imagine the following context: It

is the computer’s turn to compute the

next move. Your Lingo code calls your

multithreaded Xtra, which creates a new

thread (the “secondary thread”), which

calls the game engine with the appro-

priate parameters, and returns control

to Director and your Lingo code in the

main calling thread. While the game

engine is computing its best next move

in the secondary thread, you are free

to make your Lingo code do whatever

you feel is appropriate, for example you

could display an animation, respond to

user interactions, etc. Your Lingo code

wouldn’t need to be different than any

other ordinary Lingo code and thus can

be architected exactly the way you want

it. Director and your Lingo code would

obviously run in the main thread.

 When the game engine completes its

computation, it would then call a handler

in Director which you would have desig-

nated to take over after the next move’s

result is delivered. The game engine

would do this in the secondary thread

as it would not have access to the main

thread at this point.

 Unfortunately, this approach would

inevitably lead to a crash in Director.

This is because Director is not protected

against reentrancy: you cannot call a

Director method from anywhere else

other than the main thread. You would

have to find a way to catch its main

thread first.

 To illustrate this mechanism with our

real-world example, having the second-

ary thread directly call the completion

handler in your Director movie would

be equivalent to the sales associate call-

ing to notify you that your MP3 player

has arrived, and expecting you to take

delivery right away even though you may

be in the shower at that time of the call

and not in a position to instantaneously

respond to his or her call.

Subtle Multithreading: the
Producer/Consumer Model
 Let’s improve the notification mecha-

nism introduced above. Let’s have the

sales associate call and leave a voicemail

informing you that your MP3 Player has

arrived. This would allow you to retrieve

and respond to the voicemail in the order

that best suits your schedule.

 To do the above in a software pro-

gram, you would need to implement

a Producer/Consumer communication

model. The main thread (Director) would

be the Consumer. The secondary thread

would be the Producer. There would

be a FIFO (First-In First-Out) message

queue to coordinate their efforts. The

message queue works exactly like the

answering machine in our real-world

example between the sales associate (the

Producer) and you (the Consumer). When

the Producer has something to signal to

fi
g

u
re

 1

7 • 2005 MXDJ.COM • 31

the Consumer, it adds it to the message

queue. Every time the Consumer has

spare time, it checks the queue to see if

something is waiting for it. When it finds

a message, it retrieves it and processes it.

 In our board game example, this

translates to the following sequence:

When it’s the computer’s turn to make

a move, your Lingo calls the Xtra which

immediately returns control to your

Lingo. While your Lingo code is free to

interact with the user, the Xtra spawns

a secondary thread and sends it to the

game engine for processing. When the

game engine is ready with its next move,

it posts the result to the message queue

using the secondary thread (the only

thread it has access to). The main thread

then picks up the message and processes

it.

 While this mechanism is only

explained in the context of the comple-

tion of a computation, it equally applies

to the retrieval of the progress of a task or

its error condition.

Making It Bullet-Proof
 To make sure your threads work har-

moniously together, you have to make

sure the following conditions are met.

• Memory Sharing: The queue is a mem-

ory zone shared by multiple threads.

You must make sure that the threads

don’t modify the queue at the same

time. Luckily, operating systems imple-

ment the concept of Critical Section

to protect you against this problem. A

Critical Section is a portion of the pro-

gram that is executed continuously by

a thread without being interrupted by

any other thread. Thus, to make sure

that one thread is not retrieving a mes-

sage from the queue and reorganizing

memory while the other thread is still

posting the same message – and prob-

ably reorganizing memory too –, you

must include each message addition

and retrieval call in a Critical Section.

• Controlling Queue Size: If the

Producer adds messages to the queue

faster than the Consumer can process

them, your queue will indefinitely

grow. That would lead to uncontrolled

memory consumption, excessive

memory reallocations, excessive virtual

memory use resulting in excessive

stress on hard disk usage and CPU. The

immediate symptom would be the

extreme slow down of your computer

with a complete crash not too far away.

If you suspect that such a problem may

arise in your specific application, you

should consider implementing another

multithreading mechanism called

Semaphore. A Semaphore is a way

for multiple threads to share a limited

number of resources. In this case, the

resource is the memory used by the

message queue and a Semaphore can

be used to limit the number of items

contained in it.

• Avoiding Deadlocks: A deadlock

occurs when two threads wait for each

other and make it impossible for each

other to resume activity. Deadlocks

are often caused by a misuse of

Semaphores and Critical Sections. For

example, if the queue is full and the

Producer tries to add a message, it

first enters a Critical Section to acquire

exclusive access to the queue. Then it

checks the Semaphore to make sure

it can indeed add a message. Since

the queue is full, the Producer exits

without adding the message, hoping

to be able to do so in a later iteration,

after the Consumer has removed one

or more messages from the queue.

A fraction of a second later, the

Consumer tries to retrieve a message

from the queue: It first tries to acquire

exclusive access to the queue through

a Critical Section but fails because the

Producer already has acquired exclu-

sivity through its own Critical Section.

Consequently, the Consumer is unable

to remove a message from the queue.

This obviously creates a deadlock

between Producer and Consumer.

A Sample Implementation
 This section introduces a sample

fi
g

u
re

 2

32 • MXDJ.COM 7 • 2005

����������������������
������������ �

�������������������
����������������������

��������
����������������������

�������������������������������������
�����������������������������������
���������������������������������������
����������������������������������
���������

����������������������������������
��
��
��������������������������������������
������������������������������������
��
�����������������������������������
��������������������������������������
�����������������������������������
�������������������������������������
���������������������������������
������������������������������
����������

����������������������������
����������������������

���
���
��������������������������������������

���
��

����������������������������
�����������������������

���������������
������������������������

fi
g

u
re

 3

implementation of a multithreaded Xtra

through a simplified model. In this Xtra,

the Producer is a simple thread that

counts from 1 to 1,000, and pushes the

value of the counter into the message

queue. The Consumer retrieves the value

and calls a method in Lingo and displays

it in Director.

 We only show the Windows version

of this Xtra here, but the Mac OS version

would be almost identical. Also, for the

sake of clarity, the error checking code

has been stripped out so that the essen-

tial part of the code is more apparent.

 Let’s first look at the queue manager.

This manager is responsible for add-

ing (pushing) and retrieving (popping)

messages. We use STL (C++’s Standard

Template Library) to represent the queue.

The elements in this queue are objects of

type CEvent, which is a virtual class and

therefore can contain any type of struc-

ture.

 Adding a message to the queue:

// Make sure that the queue did not

reach its maximum size

// This call will block until the

queue has some space available

WaitForSingleObject(mSemaphore,

INFINITE);

// Request exclusive access to the

queue

// This call will block if the queue

is already being accessed elsewhere

EnterCriticalSection(&mCriticalSecti

on);

// Add the event to the queue

mEventQueue.push(theEvent);

// Signal that we no longer require

exclusive access

LeaveCriticalSection(&mCriticalSecti

on);

 Retrieving a message from the queue:

// Make sure that nobody else is

accessing the queue

// This call will block if the queue

is already being accessed elsewhere

EnterCriticalSection(&mCriticalSecti

on);

// Pop the event

CEvent* event = 0;

if (!mEventQueue.empty()) // Check if

the queue contains at least one item

{

 event = mEventQueue.front();

 mEventQueue.pop();

}

// Signal that we no longer require

exclusive access

LeaveCriticalSection(&mCriticalSecti

on);

// Release the Semaphore acquired dur-

ing the push

// This call will eventually unblock a

waiting push

ReleaseSemaphore(mSemaphore, 1, 0);

 The Producer thread part is very

simple. It will only call the message add-

ing method shown above when it needs

to communicate with the Consumer.

 The Consumer thread will poll the

queue manager on idle time and call

Lingo every time it finds a message to

34 • MXDJ.COM 7 • 2005

process. It would do this with MOA’s

notification mechanism, more precisely

through the IMoaNotificationClient inter-

face. Briefly stated, your Xtra would reg-

ister to this interface so it can be notified

of events of type NID_DrNIdle (which are

just plain idle events).

PIMoaNotificationClient pNotification-

Client;

PIMoaNotification pMmNotification;

// Acquire MOA notification interface

pObj->pCallback->QueryInterface(&IID_

IMoaNotification, (PPMoaVoid) &This-

>pMmNotification);

if (pObj->pMmNotification != 0)

{

 // Instantiate a notification client

object

 pObj->pCallback->MoaCreateInstance(&

CLSID(CScript), &IID(IMoaNotification

Client), (PPMoaVoid)&pObj->pNotifica-

tionClient);

 if (pObj->pNotificationClient)

 {

 // Register the notification client

object to receive IDLE events

 pObj->pMmNotification->RegisterNotif

icationClient(pObj->pNotificationCli-

ent, &NID_CustomNotificationID , 0,

this);

 }

}

The Notify function below is the core

of the code

STDMETHODIMP CScript_

IMoaNotificationClient::

Notify(ConstPMoaNotifyID nid, PMoaVoid

pNData, PMoaVoid pRefCon)

{

/* variable declarations */

 MoaError err = kMoaErr_NoErr;

 // We ask the notification inter-

face to pass a pointer to our CScript

interface along with the notification

 CScript_IMoaMmXScript* pThis =

(CScript_IMoaMmXScript*)pRefCon;

// Pop the event from the queue man-

ager

CEvent* event = (CEvent*)pThis->pObj-

>pEventManager->PopEvent();

 if (0 != event)

 {

 // Get the value of the counter

pushed by the Producer

MoaLong tick;

 event->GetEvent(tick);

 // Call Lingo

MoaMmSymbol LingoHandlerSym;

MoaMmValue TickValue;

// Set the name of the Lingo handler

to be called as a Symbol

pThis ->pObj->pMmUtils->String

ToSymbol(“ThreadSampleEvt”, &

LingoHandlerSym);

// Convert the counter vaue to a

MoaValue

pThis ->pObj->pMmUtils-

>IntegerToValue(tick, & TickValue);

// Call the Lingo Handler

pThis ->pObj->pDrMovie->CallHandler(Li

ngoHandlerSym, 1, & TickValue, 0);

// Release the MoaValue

pThis ->pObj->pMmUtils->ValueRelease(&

TickValue);

 // Free the memory used by the event

 delete event;

 }

 return(err);

}

 If you would like to see the complete

script, it can be downloaded from:

is http://www.INM.com/services/xtras/

sample/.

Conclusion
 If you consider the user to be an

important stakeholder in your project,

then you may be very sensitive to offer-

ing them with good-looking and superior

user interfaces. However, most of the

time, superior user interface is perceived

by multimedia developers as being

attractive and visually consistent inter-

faces. But what about functionality?

 User interactions with your program

must be as appealing and consistent as

the user interface, and multithreading

plays a key role in letting you achieve this

in the context of projects that require

time-consuming computation or network

communications. This is one of the most

commonly requested feature I see now

from clients for whom we are developing

custom Xtras, or derived versions of one

of our commercial Xtras.

 Among the different variations of

multithreaded code implementation,

from our experience, the Producer/

Consumer model is by far the most

robust and efficient one. It is also very

flexible in the sense that it allows you to

write properly architected Lingo code

and it can itself be properly architected

which makes it easier for you and your

colleagues to debug, to update and to

reuse the code in future projects. It can

also be easily extended to accommodate

projects that require multiple Producers

and Consumers. We have used this solu-

tion numerous times and it has consis-

tently proven to be the most stable and

efficient option and is something I would

definitely recommend to other Xtra

developers.

 The benefits of the Producer/

Consumer model is threefold. Not only

does it delivers benefits to the end users

of your project, but to the developers of

the project and as well, and, not to be

discounted, the sponsors of your project

who are the people who pay for its devel-

opment and expect robust software deliv-

ered on time at the least possible cost.

 In addition to having hopefully success-

fully brought you to the above conclusion,

I hope I was persuasive in demonstrating

that multimedia is more than ever multidis-

ciplinary. A few years ago, combining vari-

ous media together in a simple application

with simple navigation was considered to

be an immersive user experience.

 Indeed it was, compared to the alterna-

tives available back then. But this base line,

as well as users’ expectations, is constantly

increasing. To remain competitive, one

has to enhance every aspect of their mul-

timedia projects, including the software

portion. This requires the implementation

of advanced though proven software archi-

tecture concepts such as multithreading,

component architecture, object-oriented

design and C++ templates.

 Today’s standards for delivering a

superior multimedia projects require, in

addition to superior artistic and content

development skills, superior software

engineering skills. A requirement, we

are likely to see evolve further still in the

years to come.

7 • 2005 MXDJ.COM • 35

36 • MXDJ.COM 7 • 2005

�������������������
����������������������������
��������������������������
�����������������������������
�����������������������������

������������������������

����������������������������
��������������������������������

� �

��
���
����������������������
��
���
���

 © 2005 WEB SERVICES EDGE. ALL RIGHTS RESERVED

��

�����
��������������������

���������������
����������������������

�������������������������

�
�������������������

����������
����������
�������������������

�����������
��
���
���
���������������������������������������
��
���������������������������������������

�����������

�����������

�����������������������
�����������������
���������������

�������������������

����������������������

��������������
������������

���������������������

�

����������
����������������
����������������

�������������������
�

TM

TM

������������

� ������������������������������
� �������� �������������������������������
� � ������������������������������
� � �����������������������

�

�� ������������������
��

�

�����������������������

����������

��������

����������

�����������

���������������������������

�������������������������������������

����������������������������������

�������������������������������������

������������������������������������

��

������������������������������������

��

������������������������������������

������������������������

38 • MXDJ.COM 7 • 2005

�����������������������

����������

��������

����������

�����������

���������������������������

�������������������������������������

����������������������������������

�������������������������������������

������������������������������������

��

������������������������������������

��

������������������������������������

������������������������

ith Macromedia Captivate, you can cre-

ate interactive tutorials with recorded

narration, built-in testing, with an easy,

painless, and quick process. But now that

authors can so easily create tutorials, they

have time to think about the best way

to deliver their content to end users, and

to think about what works well with the

Captivate workflow.

 When I started using Macromedia

Captivate early last year, I quickly learned

that Captivate authors did not have a

clear deployment path for Captivate

content they wanted to make available

on the web. This problem does not stem

from Captivate – the tool has a plethora

of publishing options. Captivate can

publish to SWF file format, optionally

wrapped in HTML, to Macromedia Breeze,

a stand-alone executable with an auto-

run option for CD-ROM delivery, e-mail,

Microsoft Word, and you can even send

your content to a server through FTP

functionality from within Captivate. While

heavily testing Captivate for my own

use and collaborating with others in the

Captivate community, I quickly found

many Captivate authors that are experi-

enced, organized, and extremely talented

in delivering documentation, tutorials,

and other various e-learning content.

 To support effective and easy-to-

use delivery of Captivate content on

the web, I developed a utility, called

CaptivatePlayer. In this article, you will

learn how to deploy Captivate content

with CaptivatePlayer.

Introduction
 Captivate content is most effective

when you create many small, concise

Captivate demonstrations or simulations.

This is because Captivate has to manage

all of the media it creates: the screen-cap-

ture images, the audio narration, the cus-

tom text, cursor movements, and so forth.

That is a lot of activity and assets to track.

Even with a fast computer, it is best if you

create many small Captivate demonstra-

tions and simulations because this affects

your end user. If the Captivate content is

smaller, it is easier for an end user to fol-

low and understand. Moreover, the actual

SWF file size is smaller and results in

quicker downloads, which ensures a bet-

ter playback experience for the end user.

 Following this best practice creates a

challenge, however: You suddenly have a

bunch of SWF files, and you might not be

sure what to do with them. If you are like

most authors, you probably want your

users to access your Captivate content in

a web browser on the Internet, your local

intranet, or as a companion executable.

Since Captivate creates an HTML file or an

executable for each Captivate demonstra-

tion or simulation, does this mean you

have to create a website just to manage

all of your content? Do your users need

to keep track the content (which, by the

way, isn’t the best experience for them)?

What about the executables? Will the user

see each piece of Captivate content as a

separate “program”?

Using CaptivatePlayer
 I recognized the need for Captivate

authors to have a simple way to play

multiple Captivate SWF files and to make

it easy for them to set up since there are a

wide range of skill sets and backgrounds

in the Captivate community. In addition

to making CaptivatePlayer easy to imple-

ment for authors, it needed to be easy to

access and use for the audience. Creating

a new HTML page that loaded the

Captivate SWF files into the HTML files,

per project was unappealing; equally

unappealing was having multiple EXE

files grouped together in a folder. Linking

to SWF files directly in a web browser

does not take into account various player

version checks, control over how your

SWF displays in the browser, or provide

your user with any sense of continuity

and navigation between each SWF file.

You might be able to use the Captivate

MenuBuilder for creating the necessary

web content, but doing this for each proj-

ect could be time consuming and redun-

dant work. Captivate is fun and easy to

use for end users; I wanted an easy way

to quickly deploy created content to the

web.

 Figure 1 shows an example of a

Flash tutorial I wrote that displays in

the CaptivatePlayer (highlighted in

green), through the Firefox browser. As

you can see, CaptivatePlayer frames the

Captivate content unobtrusively, and

takes up very little room.

How CaptivatePlayer Works
 With CaptivatePlayer, your users

can view many Captivate SWF files

through one consistent interface.

CaptivatePlayer provides navigation for

users to access all Captivate SWF files.

Users access SWF files through a pop-up

menu that contains all of the Captivate

SWF file names.

 By using a menu, you maximize valu-

able screen real estate. CaptivatePlayer

also has controls for scaling Captivate

content in case your users have smaller

viewing areas. It also includes a mute

option for audio.

 CaptivatePlayer does not include

playback controls because Captivate

already provides these for you when you

create Captivate content. CaptivatePlayer

displays in 100% of the browser window,

again maximizing screen real-estate.

CaptivatePlayer is one SWF file that

dynamically loads the SWF or EXE files

published from Captivate.

 You can deploy Captivate content eas-

ily in CaptivatePlayer with the following

steps:

1. Edit the captivate_playlist.xml file by

adding your Captivate SWF file names

to it.

2. Edit the playback options in the capti-

vate_playlist.xml or in the index.html

file.

3. Upload your Captivate SWF files, the

captivate_playlist.xml, the index.html,

and CaptivatePlayer.swf file to your

web server or to the locally accessible

folder that you’re using. If you’re using

an executable, you just need your

Captivate SWF files, the captivate_play-

list.xml, and the CaptivatePlayer.exe.

All files must be in the same folder to

correctly operate.

 If you change or update your

Captivate projects, just upload the new

SWF files. If you’ve added or deleted SWF

files from your presentation, modify the

new list of SWF files in the captivate_play-

list.xml file and upload the updated XML

file.

Configuration Options
 There are two levels of configuration

that you can specify for CaptivatePlayer.

The web and EXE versions of

CaptivatePlayer read captivate_playlist.xml

(a required file), to know which Captivate

content to play. This is due to the way

security is implemented in Macromedia

Flash Player. A SWF file cannot read the

contents of a local folder; you must manu-

7 • 2005 MXDJ.COM • 39

ally specify it in the captivate_playlist.

xml file. To do so, type the names of your

Captivate SWF files into the XML file.

 The XML file has a few configuration

options that you can edit. These options

control the way CaptivatePlayer plays

your Captivate content. The configuration

options specify:

• auto play

• the starting sound volume

• whether or not to scale the size of the

Captivate content

 Advanced authors can specify these

options in the index.html file that calls

the CaptivatePlayer.swf file, but the XML

file takes precedence.

 The following example is a typical

web deployment.

How to Use the Play List
XML File
 Before you get nervous, remember

that XML files are just text files. You

can edit them in Notepad, WordPad,

Microsoft Word, or any other text edi-

tor. I prefer Macromedia Dreamweaver

because it color codes my XML nodes,

aiding readability. The following is the

XML file in Dreamweaver:

<?xml version=”1.0” encoding=”iso-

8859-1”? >

 <captivate_playlist

 autoplay=”true”

 “volume=”50”

 content=”true”>

<swf src=”demonstration1.swf”

name=”Introduction”>

 <swf src=”demonstration2.swf”

name=”How To Do”>

 <swf src=”demonstration3.swf”

name=”Conclusion”>

 </captivate_playlist>

</xml>

 When CaptivatePlayer uses the XML

file excerpted in Figure 8, CaptivatePlayer

performs the following actions:

• Automatically starts playing the first

SWF file

• Sets the volume to 50%

• Scales the Captivate SWF file to fit to

the size the CaptivatePlayer

• Puts demonstration1.swf, demon-

stration2.swf, and demonstration3.

swf into the menu, but uses the

names Introduction, How To Do, and

Conclusion

 Listed below are the options for each

of the attributes.

Attributes for the captivate_playlist

tag Value

autoplay true or false. Defaults to

“true.”

volume 0-100

scalecontent true or false.

Defaults to “true.”

 In the code sample above, the SWF

source tag has a specified name attribute.

You could have used the SWF file name, but

“Introduction” is more intuitive to the user

than demonstration1.swf. If you want to

add more Captivate SWF files, you simply

add another SWF tag in the XML file, just

like the examples provided. You can add as

many SWF tags as you like, but you must

have at least one SWF tag always present.

How to Use the
index.html File
 I included a default index.html file for

authors with either a Flash or ColdFusion

background. First, for those in a hurry,

fi
g

u
re

 1

fi
g

u
re

 2

fi
g

u
re

 3

figure 4

40 • MXDJ.COM 7 • 2005

the HTML is already written for you;

the CaptivatePlayer is embedded into

the HTML with the necessary code to

make it play in the full screen in the

browser. Second, for those incorporating

CaptivatePlayer into their own website

design, you can copy and paste the code

for embedding CaptivatePlayer.

 For more details, refer to readme_

index.txt, included in the ZIP file you

downloaded in the Requirements section.

It explains in detail how to customize and

use the index.html file.

The CaptivatePlayer
Source Files
 There are many ways you can use

CaptivatePlayer (as an embedded SWF

file in HTML or as an EXE file) and it can

be confusing understanding all the files

included in the ZIP file that accompanies

this article.

 After unzipping the archive, the base

level directory has two folders and three

files (Figure 10).

 For Flash Developers who need to use

the CaptivatePlayer in an existing Rich

Internet Application, the necessary files are

in the “Flash MX 2004 Install” folder. Included

is the MXP, which installs the CaptivatePlayer

as a component in the Components Panel.

I’ve included the MXI and SWC for Flash

Developers who need those instead.

 For Flash Developers who have

more specific needs to customize

CaptivatePlayer, the “Source Files” folder

contains the FLA file, created in Flash MX

2004 and source AS (ActionScript) files.

This folder contains everything a Flash

Developer needs to customize the design

of the CaptivatePlayer, tweak the way it

works, add functionality, and/or compile

a customized version. A default setup file,

used to initialize the CaptivatePlayer, is

included in the includes folder.

Back to Top
Where to Go from Here

 Macromedia Captivate is the easiest

and most flexible way to create interactive

demonstrations and software simulations.

It is fun to use, does the hard work for you,

and lets you spend more time focusing

on polishing up your tutorial, simulation,

demonstration, or test to make it more

effective. Because I have prior experience

creating these types of presentations

manually in Flash, I know that Captivate

significantly reduces the amount of

time and work required to create these

demonstrations and simulations. I hope

that CaptivatePlayer complements your

workflow by providing a final, easy step

in deploying your finished work for your

users online, on an intranet, or even run-

ning locally, off of another user’s machine.

 In talking to Captivate authors from all

over the USA, from Canada to Germany,

by phone and e-mail, I can definitely say

there is room to grow and improve the

way the CaptivatePlayer deploys Captivate

movies. One author has requested that I

add a global control bar instead of having

Captivate generate one for each demon-

stration or simulation. This would help

end users quickly access other Captivate

content, not just locations inside one dem-

onstration or simulation. Other authors,

who have lot of Captivate content, called

modules, also have sub-modules. They

prefer the current menu to contain nested

menus, like most context menus do today

(File > New or Right click > Properties for

example). This is especially ideal for users,

because a volume of 50-100 Captivate

demonstrations or simulations does not fit

well into a one-level menu.

 Creating these demonstrations or

simulations is only part of the process. I

created CaptivatePlayer to fulfill a need to

deliver Captivate content quickly to users.

There is still room for improvement as I

have mentioned, so if the CaptivatePlayer

does not satisfy your deployment needs,

please do send me feedback.

Notes from the Author
1. You can see CaptivatePlayer in action.

The following is a tutorial I created for

creating a Flash MX 2004 component:

dev.jessewarden.com/captivate/flash-

components/main.html.

2. To request changes in the next version

of Captivate, go to: www.macromedia.

com/go/wish/. .

Jesse Warden is a professional multi-

media developer working at Roundbox

Media. He specializes in Flex and Flash

Development. He has spoken in Sydney

Australia at MXDU 2003 and MXDU

2005, multiple Atlanta Macromedia User

Groups, Georgia Tech, and other venues

about various Macromedia products and

technologies. Jesse runs a blog at jesse-

warden.com where he contributes coding

techniques, plug-ins, and sample projects

to the community. jesse@jessewarden.

com

figure 5

fi
g

u
re

 6
fi

g
u

re
 7

fi
g

u
re

 8
fi

g
u

re
 9

fi
g

u
re

 1
0

42 • MXDJ.COM 7 • 2005

ith Macromedia Flex 1.5

you can build runtime

shared libraries (RSLs)

that can be individually

loaded, cached, and used by multiple

applications. This article demonstrates

how easily you can integrate RSLs into

your Flex applications. It also addresses

the performance tradeoffs that you must

consider when building dynamically

linked applications.

The Basics
 The best way for you to learn about

RSLs is to build several copies of the same

application with and without various per-

mutations of RSL settings. Follow these

steps:

1. Create Info.mxml, a small MXML com-

ponent that displays its initialization

time:

<?xml version=”1.0” encoding=”iso-

8859-1”?>

<mx:Button xmlns:mx=”http://www.macro-

media.com/2003/mxml”

 backgroundColor=”#ffffff”

 width=”250” height=”150”

 initialize=”go()”>

 <mx:Script>

 var name:String = “?”;

 function go()

 {

 var start:Number = 0;

 if (_global.startTime !=

undefined)

 start = _global.start-

Time;

 var dt:Number = (getTimer() -

start) / 1000;

 label = name + “ initialized

in “ + dt + “ s.” ;

 }

 </mx:Script>

 </mx:Button>

2. Create app1.mxml, a trivial little appli-

cation that you use as the basis for the

experiments:

<?xml version=”1.0” encoding=”iso-

8859-1”?>

<mx:Application xmlns:mx=”http://www.

macromedia.com/2003/mxml”

 xmlns=”*”

 width=”300”

height=”200”>

 <Info name=”{className}” />

</mx:Application>

3. Load app1.mxml in your browser. You

will see a button similar to Figure 1.

 The size of the generated SWF file

is fairly large, because simply using the

Application and Button classes causes

much of the Flex application model to

be linked into your application. If you

have the <keep-generated-swfs> option

enabled in your Flex configuration file,

Flex writes a copy of the SWF file to the

application directory as app1.swf (not to

be confused with the URL used to down-

load the SWF file, which is actually app1.

mxml.swf):

% ls -l app1.swf

-rw------- 1 rg 129899 Oct

18 07:14 app1.swf

 Each Flex application starts from

a similar baseline size, because each

contains most of the same components.

Clearly, if you have multiple Flex applica-

tions on your server, it is wasteful (of

users time and your bandwidth) for users

to have to download so much redundant

information!

 Wouldn’t it be nice to factor shared

components and assets in your applica-

tion into libraries that could be loaded at

runtime? You can!

 The following steps show you how to

convert your baseline application to use

RSLs:

1. Specify what goes into the library.

Create a file named shared.sws with

the following content:

<library>

 <component name=”Application”

 uri=”http://www.macrome-

dia.com/2003/mxml” />

 <component name=”Info” uri=”*” />

</library>

2. Copy app1.mxml to app2.mxml. Edit

app2.mxml to look like this:

<?xml version=”1.0” encoding=”iso-

8859-1”?>

<mx:Application xmlns:mx=”http://www.

macromedia.com/2003/mxml”

 xmlns=”*”

 width=”300”

height=”200”

 rsl=”shared.sws”>

 <Info name=”{className}” />

 </mx:Application>

3. Load app2.mxml in your browser,

and if you haven’t made any typos, it

should look virtually identical to app1

(Figure 1).

 Congratulations, you’ve now con-

verted a statically linked Flex appli-

cation (all components and assets

defined internally) to a dynamically

linked Flex application (some compo-

nents and assets loaded at runtime).

Observe the file sizes:

-rw------- 1 rg 129899 Oct

18 07:14 app1.swf

-rw------- 1 rg 9127 Oct

18 07:23 app2.swf

rsl

Using Runtime Shared Libraries

Improving download performance
by roger gonzalez

w

fi
g

u
re

 1

Tutorials and sample

files can be download at

http://download.macro-

media.com/pub/devel-

oper/rsl_examples.zip

44 • MXDJ.COM 7 • 2005

 You’ve decreased the SWF file size by

117K – quite an improvement! I’ll explain

where the bits went in the next section.

On the surface, it might appear from

your SWS file that you were only going to

import the Application and Button com-

ponents. However, you are actually also

importing all their dependencies. In gen-

eral, you will see an immediate improve-

ment in download size by building a SWS

file that just references Application, but

you get the best improvement by care-

fully setting up your SWS specification

to include all referenced shared compo-

nents.

 Currently, there is no straightfor-

ward way to know the optimal set of

components to include in your SWS file.

However, you can get some hints by

perusing the compile report generated

when you build your application (and

have the appropriate setting enabled in

your Flex server configuration file). Any

symbol definition marked “external” is

imported from a RSL. All other symbols

are linked into the application itself. Don’t

worry too much if a few stray classes get

linked in; if you just list the MXML ele-

ments that you use, you are guaranteed

to get a highly effective RSL.

Download Performance
 Although Flash Player expects an RSL

to be a SWF file, the file generated from

a SWS library specification is actually a

SWC component library. A SWC file is a

compressed archive (in ZIP format) con-

taining an implementation SWF file and

additional metadata for use by the com-

piler. (This enables you to quickly switch

between dynamic linking with the rsl

property and static linking with the lib

property!)

 The library you built from shared.sws

is created in the Flex server’s generated/

libs directory hierarchy. The Flex server

knows how to extract the implementa-

tion SWF file (often named Library.swf)

from the SWC file by the URL; in this case

the URL is shared.swc.swf. You can use

any ZIP tool to peek at the size of the

SWF inside the library:

% unzip -l $FLEX_APP/WEB-INF/Flex/gen-

erated/libs/*/shared.swc | grep ‘.swf’

 140628 10-18-04 07:23 Library.

swf

 Notice that the aggregate size of the

dynamically linked application app2.swf

plus the RSL shared.swc.swf is larger than

the size of the statically linked app1.swf

file. This is due to the overhead that is

part of a SWF library as well as some lost

opportunities for code merging in the

optimization phase of the Flex compiler.

This overhead should make it obvious

that RSLs do not help if you only have a

single Flex application. The real download

performance benefit occurs when you

have multiple applications sharing the

same RSL.

 Imagine users downloading two stati-

cally-linked applications similar to app1.

mxml compared to downloading two

dynamically-linked applications similar to

app2.mxml:

2x (app1.swf @ 129899) = 259798

2x (app2.swf @ 9127) + (shared.swc.swf

@ 140628) = 158882

 The aggregate download size

improvement using dynamic linking is

clearly a big win here (That’s about 18

seconds for a user on a 56K modem, if

those still exist; but perhaps more impor-

tantly it reflects nontrivial cash savings in

network usage if you have lots of users.).

The download size improvement only

improves more so as you leverage the

same RSL! Thus, although the download

size of a single dynamically-linked appli-

cation is slightly worse than the down-

load size of a comparable statically-linked

application, the amortized download

performance across multiple applications

is much better.

Runtime Performance
 Unfortunately, the runtime cost of

using RSLs is not that simple. It has sev-

eral dimensions.

 To download the application and its

RSL(s), Macromedia Flash Player needs

to perform multiple HTTP transactions

where previously one was sufficient. This

adds latency (potentially one second

per additional TCP connection if HTTP

KeepAlive isn’t supported) and an addi-

tional failure mode (a network glitch after

application load but before RSL load).

 Since not all applications are identi-

cal, it is quite likely that an RSL built with

the union of all components needed by

several applications will (when consid-

ered on a per-application basis) always

contain more components and assets

than the “pruned-down” list possible with

a statically-linked application. These extra

unused definitions have a small but mea-

surable overhead.

 To experience these issues first-hand,

follow these steps:

1. Create allmx.sws with the entire Flex

application model included:

<library>

 <namespace uri=”http://www.macrome-

dia.com/2003/mxml” all=”true” />

 </library>

2. Copy app2.mxml to app3.mxml, and

change it to use your newly created

SWS file:

<?xml version=”1.0” encoding=”iso-

8859-1”?>

<mx:Application xmlns:mx=”http://www.

macromedia.com/2003/mxml”

 xmlns=”*”

 width=”300”

height=”200”

 rsl=”allmx.sws”>

 <Info name=”{className}” />

 </mx:Application>

Compiling this version results in a

very large RSL:

% unzip -l $FLEX_APP/WEB-INF/Flex/gen-

erated/libs/*/allmx.swc | grep ‘.swf’

 457111 10-17-04 20:14 Library.

swf

 Observe that the aggregate download

of this RSL plus two app3 SWF files would

be much larger than even the statically-

linked app1 SWF file! Unless you can

leverage this RSL more effectively, overall

download performance will be worse

than in the case of a statically linked app1

SWF file.

 Also, unless you are using a much

faster computer than mine, compiling,

downloading, and even initializing this

version took quite a bit of time. Before

you can address the amount of time

taken, you need to be able to differ-

entiate the time spent on compilation

download time and initialization time.

Compilation time is a one-time amor-

tized cost, and you can eliminate it by

using precompilation; download time is

another amortized cost, described earlier.

Initialization time would appear to be a

fixed cost, but you will discover later on

7 • 2005 MXDJ.COM • 45

that it can also be improved.

 Without changing any files, clear your

browser cache, and observe how long

it takes to load app2.mxml compared

to app3.mxml. Since neither application

needed recompilation, you should see

only the time necessary for download

and initialization. (On a fast computer

with a local server, you may not see much

of a difference; if you have a network

debugger tool that enables you to simu-

late a slow connection, now would be a

great time to use it! If not, you might try

connecting remotely or embedding large

images into the application and using

RSLs to slow things down.)

 Because RSLs are normally loaded by

Flash Player in a manner that blocks the

application and provides no mechanism

for error recovery, Flex RSLs are “pre-

fetched” by the application preloader to

monitor the download status and report

errors, and the “real” load of the RSL is a

quick fetch out of the cache. However,

this extra pre-fetch adds some overhead.

You can disable this feature for any RSL

by adding preload=”false” to your RSL’s

<library> element. (Disabling the applica-

tion preloader will disable all RSL pre-

fetching.)

Hierarchical RSL Loading
 While you can build a single custom

RSL that contains a mix of your own com-

ponents and the Flex application model,

you might also find it valuable to parti-

tion-related groups of components and

assets into a hierarchy of multiple RSLs.

For example, create a new file named

applib.sws with the following library

specification:

<library rsl=”allmx.sws”>

 <component uri=”*” name=”Info” />

</library>

Then, copy app3.mxml to app4.mxml,

with the following change:

<?xml version=”1.0” encoding=”iso-

8859-1”?>

<mx:Application xmlns:mx=”http://www.

macromedia.com/2003/mxml”

 xmlns=”*”

 width=”300”

height=”200”

 rsl=”applib.sws”>

 <Info name=”{className}” />

</mx:Application>

 This is probably the slowest version

of all the applications you have built so

far in this tutorial, but it allows unrelated

applications to use the Flex application

model in its own RSL without the over-

head of other unnecessary components.

Again, you will need multiple large appli-

cations that use most of the Flex compo-

nents in order to effectively leverage this

configuration.

Test Harness

 So far, you have created several

dynamically linked applications. However,

so far, you’ve only relied on how long it

“feels” for an application to load, and the

amount of time it takes for the applica-

tion to initialize—a crude measurement

that depends on the ActionScript get-

Timer() call starting at zero when Flash

Player initializes. It also suffers from the

problem that Flash Player may be started

up asynchronously with the actual net-

work download of the SWF file, and isn’t

necessarily seeing the true startup time

from the first bit of data. The results of

this crude measurement are probably a

bit optimistic.

 The best way around this problem

is to start Flash Player ahead of time

with a bootstrap loader application, and

have the bootstrap loader measure the

actual load time of your applications.

Describing how this works is beyond the

scope of this article, but a simple (and

fairly self-explanatory) version called loa-

dit.mxml is included here: http://www.

macromedia.com/devnet/flex/articles/

rsl.html. You use this application by

passing it the name of an SWF file as the

value of the app query parameter in the

URL (see Figure 2).

 The URL I use to load the app is

http://localhost:8100/flex/rslarticle/loadit.

mxml?app=app1.mxml.swf.

 Note the use of the .mxml.swf exten-

sion to get the loadit app to load your

application’s SWF data rather than the

application’s HTML shell, which would

just confuse Flash Player.

 Try loading app1.mxml through

app4.mxml, clear the cache, and then

load each application again. Observe

the increase in startup time with each

increasingly complex use of dynamic link-

ing.

fi
g

u
re

 3

fi
g

u
re

 2

46 • MXDJ.COM 7 • 2005

SYS-CON MEDIA
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales &
Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com
Advertising Sales & Marketing
Manager
Dennis Leavey, 201 802-3023
dennis@sys-con.com
Advertising Sales Manager
Megan Mussa, 201 802-3023
megan@sys-con.com
Associate Sales Managers
Dorothy Gil, 201 802-3024
dorothy@sys-con.com
Kim Hughes, 201 802-3025
kim@sys-con.com

PRODUCTION
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director
Tami Beatty, 201 802-3038
tami@sys-con.com
Assistant Art Directors's
Andrea Boden, 201 802-3034
andrea@sys-con.com
Abraham Addo, 201 802-3037
abraham@sys-con.com
Video Production
Frank Moricco, 201 802-3036
frank@sys-con.com

SYS-CON.COM
Consultant, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Vincent Santaiti, 201 802-3054
vincent@sys-con.com

ACCOUNTING
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com
Accounts Receivable
Gail Naples, 201 802-3062
gailn@sys-con.com

EVENTS
President, SYS-CON Events
Grisha Davida, 201 802-3004
grisha@sys-con.com
National Sales Manager
Jim Hanchrow, 201 802-3066
jimh@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

Applications, Loaders, and
“Mini-Apps”
 If you look at loadit.mxml, you will

notice that it is mostly pure ActionScript

and does not use of any of the Flex appli-

cation model. This is necessary because

as it turns out, using the Flex components

in the loader application has a direct

effect on the initialization time.

 To demonstrate how significant,

load the multiloader.mxml application

included in the samples.zip file men-

tioned above. This application is similar

to the loadit version, except that it is built

using the Flex application model; it does

its work using the Loader component

instead of low-level ActionScript, and

app1 through app4 can be loaded with a

click.

 As you load the different applications,

observe that the times are uniformly

lower than the times when using loadit.

mxml, even if you clear the browser cache

while multiloader.mxml is running.

 This is because the ActionScript class

prototype setup only occurs once for a

given class, even if the class is loaded

again later. Although the timing data dis-

played by loadit.mxml is a more accurate

measurement of loading and initializing

an application from scratch, you can

exploit the initialization time improve-

ments demonstrated by multiloader.

mxml as a technique for incrementally

loading very large applications.

 By partitioning your application into

an outer shell and a number of individu-

ally loaded modules, and optimizing the

download by making all the modules and

the outer shell share common RSLs, you

get the best of both worlds. While this

takes a bit more work for the developer,

it pays for itself with significantly faster

interactivity compared to a monolithic

application.

Compilation Performance
 Although compilation performance is

nowhere near as important as download

and runtime performance, it’s still very

nice to have a quick rebuild cycle.

 If you use RSLs with an application

that is frequently changed on a live serv-

er, you will see significant compilation

and download improvements by mov-

ing components and assets that do not

change into an RSL – only the application

itself will be recompiled. The RSL will be

up-to-date and available for fast relink-

ing and will not need to be downloaded

again by users if it has already been

cached by their browsers.

 You can also invert this process if you

have an RSL undergoing frequent chang-

es. Just set the rebuildClients=”false”

attribute in your SWS file, and the RSL can

be rebuilt without triggering the applica-

tion to recompile. This is dangerous if

you change the component source code,

however, because you must make certain

that you don’t change the interface to

any of the classes in a way that will break

the application. However, for certain RSLs

that contain only assets (for example,

imagine an RSL that is rebuilt every morn-

ing from an autogenerated SVG diagram),

it will significantly improve performance.

 If you set up your RSL correctly, you

can even use it as a substitute way of

dynamically loading image types that

would normally need to be embedded

because their format isn’t natively sup-

ported by Flash Player – the RSL compiler

is acting as an automatic transcoder!

 With sufficiently tricky library configu-

ration (using the rebuildClients=”false”

and preload=”false” attributes), it is pos-

sible to get into a situation where a com-

pilation error in a library component can-

not be reported anywhere (normal errors

require the application to be rebuilt in

order for them to be reported in the

HTML shell). If it seems like your RSL isn’t

loading, fall back to the default settings

to ensure that you’re not missing some

important warnings or error output.

 In conclusion, runtime shared libraries

are easy to use, but may impose some

noticeable runtime overhead. This cost is

generally acceptable if you can leverage

dynamic linking to significantly improve

your applications’ amortized download

performance. By understanding the

tradeoffs of different RSL configurations,

you can choose the most effective archi-

tecture for your applications.

Roger Gonzalez is a Principal Engineer

on the Flex compiler team. Prior to

Macromedia, he has done everything

from working on autonomous underwater

robots to running the engineering group

at a 3D game development studio. Roger

is an avid motorcyclist, and recently relo-

cated to California in order to pursue year-

round riding. rgonzalez@macromedia.com

48 • MXDJ.COM 7 • 2005

SYS-CON MEDIA
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales &
Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com
Advertising Sales & Marketing
Manager
Dennis Leavey, 201 802-3023
dennis@sys-con.com
Advertising Sales Manager
Megan Mussa, 201 802-3023
megan@sys-con.com
Associate Sales Managers
Dorothy Gil, 201 802-3024
dorothy@sys-con.com
Kim Hughes, 201 802-3025
kim@sys-con.com

PRODUCTION
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director
Tami Beatty, 201 802-3038
tami@sys-con.com
Assistant Art Directors's
Andrea Boden, 201 802-3034
andrea@sys-con.com
Abraham Addo, 201 802-3037
abraham@sys-con.com
Video Production
Frank Moricco, 201 802-3036
frank@sys-con.com

SYS-CON.COM
Consultant, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Vincent Santaiti, 201 802-3054
vincent@sys-con.com

ACCOUNTING
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com
Accounts Receivable
Gail Naples, 201 802-3062
gailn@sys-con.com

EVENTS
President, SYS-CON Events
Grisha Davida, 201 802-3004
grisha@sys-con.com
National Sales Manager
Jim Hanchrow, 201 802-3066
jimh@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

7 • 2005 MXDJ.COM • 49

Brightbox

rightbox is my 2005

portfolio Web site

– it’s a Flash movie

inspired by my

favorite design styles all rolled

into one movie. I wanted to cre-

ate something completely out of

the ordinary – something people

would remember, and I wanted

users to want to "figure out" how

to use the site and discover its lit-

tle surprises along the way. www.

brightbox.co.za/

b

va
n

g
u

a
rd

50 • MXDJ.COM 7 • 2005

Drown your competition with Intermedia.NET

© Copyright INTERMEDIA.NET, Inc 2005. All rights reserved. All other trademarks are property of their respective holders.

Looking for a hosting company with the most cutting-edge
technology? With Intermedia.NET you get much more than
today’s hottest web & Exchange hosting tools – you get a
decade of experience and an unmatched reputation for
customer satisfaction.

Thousands of companies across the globe count on us
for reliable, secure hosting solutions…and so can you.

In celebration of 10 successful years in the business,
we’re offering a promotional plan for just $1. Visit our
website www.intermedia.net to find out more.

Our premier hosting services include:
� Windows 2003 with ASP.NET
� ColdFusion MX with Security sandboxes
� Linux with MySQL databases
� E-Commerce with Miva Merchant Store Builder
� Beneficial Reseller Programs
� …and much more!

Unprecedented power, unmatched reputation…
Intermedia.NET is your hosting solution.

Call us at: 1.888.379.7729
e-mail us at: sales@intermedia.NET
Visit us at: www.intermedia.NET

